A GENERALISATION OF THE DIOPHANTINE EQUATION x^2+8∙7^b=y^2r

Main Article Content

Siti Hasana Sapar
Kai Siong Yow

Abstract

We investigate the integral solutions to the Diophantine equation  where . We first generalise the forms of  and  that satisfy the equation. We then show the general forms of non-negative integral solutions to the equation under several conditions. We also investigate some special cases in which the integral solutions exist.

Downloads

Article Details

How to Cite
Sapar, S. H., & Yow, K. S. (2021). A GENERALISATION OF THE DIOPHANTINE EQUATION x^2+8∙7^b=y^2r. Malaysian Journal of Science, 40(2), 25–39. https://doi.org/10.22452/mjs.vol40no2.3
Section
Original Articles

References

Abu Muriefah, F. S. & Bugeaud, Y. (2006). The Diophantine equation x^2+c=y^n: a brief overview. Revista Colombiana de Matemáticas. 40: 31-37.

Arif, S. A. and Abu Muriefah, F. S. (1998). The Diophantine equation x^2+3^m=y^n. International Journal of Mathematics and Mathematical Sciences, 21(3): 619-620.

Cohn, J. H. E. (1992). The Diophantine equation x^2+2^k=y^n. Arch. Math. (Basel). 59: 341-344.

Cohn, J. H. E. (1993). The Diophantine equation x^2+c=y^n. Acta Arithmetica, 65: 367-381.

Ko, C. (1965). On the Diophantine equation x^2=y^n+1,xy≠0. Scientia Sinica, 14: 457-460.

Le, M. (1997). Diophantine equation x^2+2^m=y^n. Chinese Science Bulletin, 42: 1515-1517.

Le, M. (2003). On the Diophantine equation x^2+p^2=y^n. Publ. Math. Debrecen. 63: 67- 78.

Lebesgue, V. A. (1850). Sur l’impossibilité en nombres entiers de l’équation x^m=y^2+1. Nouvella Annals Des Mathemetics, 78: 26-35.

Luca, F. (2000). On a Diophantine equation. Bulletin of the Australian Mathematical Society, 61: 241-246.

Luca, F. (2002). On the equation x^2+2^a 〖∙3〗^b=y^n. International Journal of Mathematics and Mathematical Sciences, 29: 239-244.

Luca, F. and Togbe, A. (2008). On the Diophantine equation x^2+2^a∙5^b=y^n. International Journal of Number Theory, 4: 973-979.

Mignotte, M. and Weger, B. M. M. (1996). On the Diophantine equation x^2+74=y^5 and x^2+86=y^5. Glasgow Mathematical Journal, 38(1): 77-85.

Wiles, A. J. (1995). Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics, 141(3): 443-551.

Yow, K. S., Sapar, S. H. and Atan, K. A. (2013). On the Diophantine equation x^2+4∙7^b=y^2r. Pertanika J. Sci. & Technol, 21(2): 443-458.