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Abstract: This research aims to apply and compare two semi-analytical techniques, the Variational Iterative Method (VIM) and the New 
Iterative Method (NIM), for solving a pre-formulated mathematical model of Fractional-order Leptospirosis. Leptospirosis is a significant 
bacterial infection affecting humans and animals. By implementing the VIM and NIM algorithms, numerical experiments are conducted 
to solve the leptospirosis model. Comparing the obtained findings demonstrates that VIM and NIM are effective semi-analytical methods 
for solving systems of fractional differential equations. Notably, our study unveils a crucial dynamic in the disease's spread. The application 
of VIM and NIM offers a refined depiction of the biological dynamics, highlighting that the susceptible human population gradually 
decreases, the infectious human population declines, the recovered human population increases, and a significant rise in the infected 
vector population is observed over time. This nuanced portrayal of the disease's dynamics is crucial for understanding the intricate 
interplay of Leptospirosis among human and vector populations. The study's outcomes contribute valuable insights into the applicability 
and performance of the methods in solving the Fractional Leptospirosis model. Results indicate rapid convergence and comparable 
outcomes for both methods. 
 

Keywords: Leptospirosis model, fractional differential equation, variational iterative method, semi-analytical methods, new iterative 
method.  

 
1. Introduction 

 

Over time, mathematics has been utilized to comprehend the 

modes of disease transmission throughout the world. Infectious 

diseases are those that are transmitted from one individual to 

another, whereas non-infectious diseases are typically caused by 

environmental or genetic factors. Infectious diseases have 

commonly been regarded as the adversaries of human health 

throughout history and have remained the leading causes of pain 

and death in underdeveloped nations. It is common knowledge 

that the spread of a communicable disease involves disease-

related parameters such as the infectious agent, infectious 

periods, incubation period, mode of transmission, resistance, and 

susceptibility. Leptospirosis is a bacterial infection that poses 

significant health risks to both humans and animals, with a global 

impact on public health. Understanding the dynamics of 

leptospirosis is crucial for effective disease management and 

prevention. Mathematical modeling has proven to be a valuable 

tool for studying infectious diseases, providing insights into their 

transmission patterns, and informing control strategies (Aslan et 

al., 2021; Ali et al., 2022; Akogwu, 2022; Falade et al., 2021; 

Gallego & Simov, 2021; Pan et al., 2021; Ozlem, 2020; Peter et al., 

2022; Khan et al., 2021; Gomez et al., 2022; Raouf et al., 2022;  

Ramashis & Biswa, 2022).   

Due to the difficulties of finding analytical solutions for 

fractional order differential equations, semi-analytical 

approximation methods are given to solve such fractional order 

differential equation problems. This research aims to utilize the 

Variational Iterative Method (VIM) and New Iterative Method 

(NIM), for the numerical solution of the fractional-order 

Leptospirosis model occurring in five compartments of the 

Leptospirea environment. These methods have been 

demonstrated to be excellent mathematical tools for a variety of 

bio-mathematical phenomena for linear and nonlinear fractional 

systems of ordinary differential equations. They are promising 

numerical methods that combine analytical and iterative 

approaches to approximate solutions of differential equations. 
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The VIM, proposed by Ji-Huan He in 1999 and later modified in 

2007, involves constructing an auxiliary function using a 

variational principle and iteratively improving the solution. It is a 

semi-analytical method used to solve various differential 

equations, including fractional differential equations, boundary 

value problems and integro-differential equations (Ahmad, 2018; 

Tebyakin et al., 2023; Narayanamoorthy & Mathankumar, 2018; 

Shirazian, 2023; Shihab et al., 2023).  

The NIM is a well-known method, which is introduced by 

Daftardar and Jafari (2006) and later called the Daftardar-Jafari 

method. It is a simple and efficient semi-analytical method for 

solving differential equations with applications in various fields. 

The NIM employs an iterative scheme to linearize the problem 

and refine the solution. It has been successfully applied to 

differential equations fractional differential equations and partial 

differential equations (Falade & Tiamiyu, 2020a; Batiha et al., 

2023; Falade & Tiamiyu, 2020b). 

Both methods have the advantage of providing accurate 

solutions with reduced computational efforts compared to purely 

numerical methods. However, they have some limitations. The 

dependency on initial approximations can be a drawback, 

requiring careful selection and additional effort. Convergence 

analysis and stability considerations are also important, 

particularly when dealing with complex systems or equations with 

discontinuities. The proposed research is justified due to the 

importance of understanding and managing leptospirosis, the 

advantages offered by these methods, and their potential 

contributions to the field of mathematical modeling in 

epidemiology. 

The literature review reveals the suitability of the two methods 

for solving diverse mathematical problems. While these methods 

have been applied to various mathematical equations, their 

specific application to leptospirosis modeling remains limited. 

This study aims to fill this research gap by assessing the 

performance of these methods in solving a fractional leptospirosis 

model. The novelty and contribution of this research lie in the 

application and assessment of the two methods, to solve a 

Fractional model of leptospirosis. While the model formulation 

itself may have been established, the research introduces a fresh 

perspective by exploring and evaluating the effectiveness of VIM 

and NIM in the context of solving the leptospirosis model. By 

evaluating the performance of these methods in the context of 

leptospirosis, this study offers insights into their suitability and 

effectiveness in capturing the dynamics of the disease. The 

findings contribute to the existing body of knowledge by 

expanding the understanding of how these methods can be 

applied to infectious disease modeling, potentially leading to 

improved disease management strategies. 

The structure of this study is as follows: The second section 

covers a description and formulation of the model and a 

qualitative analysis of the model, which includes the local stability 

analysis and Reproduction number.  The third section covers a 

brief introduction to Fractional calculus and some semi-analytical 

methods, employed for solutions to fractional order derivatives. 

Section four is concerned with computational experiments of the 

model, and its Results which are illustrated graphically to 

illustrate the impact of various variables and characteristics 

regarding the disease. Furthermore, a discussion of the result is 

also presented in Section 5. Finally, we conclude the research in 

Section 6. 

 
2. Model Formulation 
 

The Leptospirosis Model formulation 

Considering the works of Khan et al. (2014); Bhalraj et al. (2021) 

and Aslam et al. (2021), we will use some assumptions in this 

section to create a deterministic mathematical model of the 

Leptospirosis virus. This is accomplished by studying how the virus 

spreads between humans and vectors (cattle). The model is 

categorized into three compartmental models for humans and 

two for vectors (cattle). The category of Susceptible  HS

humans is made up of people who are recruited at a constant rate 

1g  and get infected at a rate 
1  and 

2 in connections to 

infected humans and vectors respectively. The number of 

vulnerable population of humans who can become infected 

fluctuates due to changes in the birth rate or immigration. This 

category increases by the rate 
H  for those who can become 

vulnerable again, and it decreases by the rate 
H  for those who 

die naturally. The rate of change in the susceptible category can 

therefore be characterized as: 

 

1 1 2

( )H
H H H H H V

H H

dS t
g R S S I S I

dt
                                                                                (1) 

 

The category of infected humans  HI  tends to increase 

among vulnerable individuals infected at rates 
1B  and 

2B , and 

decreases due to natural and induced mortality rates 
H  and  

H , respectively. Those who recover from the sickness at a 

slower rate contribute further to the decline. Consequently, the 

rate of change of infected humans is depicted as: 
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 1 2

( )H
H H H V H

H H H

dI t
B S I B S I I

dt
                                                                                        (2) 

The recovery category of human inhabitants  HR  grows at a rate 
H   of the transition from infected to recovered compartments. Then, 

it is reduced by those who recovered from being infectious due to immunity at rate 
H   and by the natural death of recovered inhabitants 

of rate 
H . As a result, the community of recovered individuals is changing at the following rate: 

( )H
H H H

H H H

dR t
I R R

dt
                                                                                                                   (3) 

The category of susceptible vectors  VS is created by the recruitment rate 
2g . It decreases due to the natural mortality of vectors at 

rate 
V  and advancement to the infected group at rate 

3 . Therefore, the following equation can be used to describe how this category 

works: 

2 3

( )V
V V H

V

dS t
g S S I

dt
                                                                                                                      (4) 

The infected category of vector inhabitants  VI grows after receiving the virus. The natural death rate 
V , and induced mortality rate 

V of the infected vectors cause a decrease. Therefore, the behavior of this category can be modeled using the following equation: 

3

( )V
V H V V

V V

dI t
B S I I I

dt
                                                                                                                    (5) 

With the above assumptions, the non-linear differential equation framework is provided by 

1 1 2

1 2

2 3

3

( )

( )

( )

( )

( )

H
H H H H H V

H H

H
H H H V H H H

H H H

H
H H H

H H H

V
V V H

V

V
V H V V

V V

dS t
g R S S I S I

dt

dI t
S I S I I I I

dt

dR t
I R R

dt

dS t
g S S I

dt

dI t
S I I I

dt

 

  

  



 

    

     

  

  

   

            (6) 

Therefore, the entire human population is denoted by the equation ( ) ( ) ( ) ( )H H H HN t S t I t R t   , whereas the population of 

vectors (cattle) is denoted by the equation ( ) ( ) ( )V V VN t S t I t  . 

 

The Fractional Order Leptospirosis Model 

According to Chen et al., (2021), the integer-order derivatives of the Leptospirosis epidemic model in (6), are substituted with a fractional-

order operator of the Caputo type. The fractional model is controlled by a set of nonlinear differential equations of fractional order  , 

which are described in the following way: 

 

 

 

 

 

1 1 2

1 2

2 3

3

H H H H H V H

C t H H

H H H H V H H H

C t H H H

H H H H

C t H H H

V V V H

C t V

V V H V V

C t V V

D S t g S S I S I R

D I t S I S I I I I

D R t I R R

D S t g S S I

D I t S I I I











 

  

  



 

    

     

  

  

   

                                                      (7) 

where C tD
 represents Caputo fractional derivative regarding order  . 
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Reproduction Number of the Model 

The reproduction number will be computed by utilizing the matrix method of the next generation. Based on the next-generation matrix 

idea, the fundamental reproduction number is the next-generation matrix’s spectral radius “
1FV 

”. That is the fundamental reproduction 

quantity is given as  
1

0 FV      . To derive the reproduction number, we utilize the second and fourth equations in (7) to obtain  

1 2 1

3 3

,

H H H V H

V H V

S I S I K I
F V

S I K I

 



   
       
   

   (8a) 

And then linearize to generate  

1 1

1 2

3
2 2

1 1

1

3
2 2

0

0

0

H HH V

V

H V

H V

H V

F F

S SI I
F

S
F F

I I

V V

KI I
V

K
V V

I I

 



 
   

   
    

   
    


     
             

     

                                                 (8b) 

                                        

where matrix F represents the partial derivatives of the infected compartments in the human equations with respect to the infected 

compartments in both human and vector populations. Similarly, matrix V represents the partial derivatives of the infected compartments in 

the vector equations.  After some algebraic manipulations and matrix multiplication, it results into 

1 2 1 2

1 3 1 31

0

3 3

1 1

,

0 0

H H H H

V V

S S S S

K K K K
FV and

S S

K K

   


 



   
   
     
   
   
   

              (9) 

where 
1 3H H H V VK and K         ,   then we have the following eigenvalues of the 1FV   matrix follows 

2 2 2

3 1 1 1 3 3 2 2 1 3 1 1

1

1 3

2 2 2

3 1 1 1 3 3 2 2 1 3 1 1

2

1 3

4

2

4

2

V H V

V H

V H V

V H

K g K K g g K g

K K

K g K K g g K g

K K

  


 

  


 

     


     
 

                                (10) 

Hence, the reproduction number is represented as 

2 2 2

3 1 1 1 3 3 2 2 1 3 1 11

0

1 3

4

2

V H V

V H

K g K K g g K g
FV

K K

  


 


     
                                     (11) 

Stability of the Leptospirosis Free Equilibrium (LFE) 

The leptospirosis-free equilibrium  * * * * *, I ,R , , IH H H H H

LFE S S   is achieved when the population is free of disease. A total of zero 

will be assigned to all affected categories. As such, the leptospirosis-free equilibrium meets the conditions. 

  1 2
* * * * *, I ,R , , I ,0,0, ,0H H H H H

LFE

H V

b b
S S

 

 
   

 
                                (12) 

To assess the stability of the disease-free equilibrium, we computed the Jacobian matrix in (12) to get 



 

72 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol43no3.9 

Malaysian Journal of Science 43(3): 68-85 (September 2024) 

4 5

6 1 7

2

8

9 3

0

0 0 0

0 0 0

0 0 0

0 0 0

H H

M H

V

K K

K K K

J K

K

K K

 





   
 

 
  
 

  
  

                                              (13) 

where 
2 31 1 1 2

2 4 6 5 7 8 9, , , ,H H

H H V

gg g
K K K K K K K 

  

 
         and obtain its eigenvalue as follows. 

1

2

3 2

2 2 2

1 3 1 6 1 3 3 6 6 9 73 61
4

2 2 2

1 3 1 6 1 3 3 6 6 9 73 61
5

2 2 2 4

2 2 2 2

2 2 2 4

2 2 2 2

H

V

K

K K K K K K K K K K KK KK

K K K K K K K K K K KK KK

 

 







 

 

 

     
    

     
    

                 (14) 

This demonstrates that the real parts of the eigenvalues are 

negative. As a result, the equilibrium of the leptospirosis at free 

disease state is said to be asymptotically stable if the real parts of

4 and 5 are negative too. 

 

Table 1. Values of Parameters Used in Computations. 

Parameters Description Value Source 

H  Human's natural death rate 0.0121 (Khan et al., 2021) 

H  Coefficient of susceptible humans after recovery 0.0008 (Paist & Thamchai, 2021) 

H  Coefficient of Induced human death from disease 0.00001 (Altaf et al., 2014) 

V  Induced vector death from disease per time 0.001 (Khan et al., 2022) 

H  Human recovery coefficient 0.025 (Khan et al., 2022) 

V  Vector's natural death rate 0.0018 (Altaf et al., 2014) 

1  Transmission between Susceptible human and infected 
human 

0.000014 Assumed 

2  Transmission between Susceptible human and infected 
vector 

0.00002 Assumed 

3  Transmission between Susceptible vector and infected 
human 

0.007 Assumed 

1g  
Rate of human recruitment 0.121 (Chong et al., 2022) 

2g  
Rate of vector recruitment 0.002 (Khan et al., 2022) 
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3. Fractional Calculus 
Although fractional calculus is quite old as calculus itself, it has 

only been in recent decades that its practical applications and 

mathematical virtues have come to light (Mukdasai et al., 2022; 

Ayoade et al., 2018; Darzi & Agheli (2018)). The evolution of 

several definitions, some of which modified pre-existing ones, 

may be seen. The sequel provides a few of the more significant 

ones employed in this work. 

Definition 1: A function  U t  [i, j]  associated with the 

Riemann-Liouville (RL) fractional integral operator of order    

is represented as  

 
 

   
1

0

1
, 0,

t

I U t t s U s ds i t j
 




    
                             (15) 

 

where the function of gamma   is expressed in the format    1

0

te s ds


                                                                      

 Also, the properties in connection with Riemann-Liouville are; 

(i).    U t U t        

(ii).    U t U t         

(iii). 
 

 

1

1
t t   

 


 
 

  
                                   

 

Definition 2: For a function  U t  within i t j  , concerning Caputo derivative operator of order    is expressed as 

   

 
   

1

0

1

r r

t

r
t r

D U t J D U t

d
t s U s ds

r ds

 

 





 



 
   
   


                                         (16) 

where  1 , 0r r r and t     . The associated properties of the Caputo style are; 

(i).    D U t U t                                                                   

(ii). 
 

 

1

1
D t t   

 


 

  

 

(Sources: Mousa & Altaie, 2022; Zabidi et al., 2020; Falade et al., 2023) 
 
By considering a numerical approach for the functional relation in the format. 

     ( )tD U t fU t NU t g t                                                  (17) 

where 𝑁 is considered a nonlinear operator, f  is a linear function and g  is an inhomogeneous term. This section aims to expand the 

applicability of the NIM and VIM techniques to find approximate results for fractional nonlinear differential systems designated as 

       

       

       

1

2

1 1 1 2 1 1 2 1

2 2 1 2 2 1 2 2

1 2 1 2

, , , , , ,

, , , , , ,

, , , , , ,k

t k k

t k k

t k k k k k k

D U t f U U U N U U U g t

D U t f U U U N U U U g t

D U t f U U U N U U U g t







  

  

  

                                 (18) 
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where tD
 is the Caputo-style derivative of kU  of order k , subject to some initial criteria such as 

     1 1 2 20 , 0 , , 0n kU h U h U h   , for  0 1k   

The Variational Iterative Method (VIM) 

The VIM’s ideas as well as its applicability to a wide range of 

different types of linear and nonlinear differential equations are 

discussed in (Alwehebi et al., 2023; Yin et al., 2013). In the VIM, 

Lagrange multipliers enforce constraints in the auxiliary function, 

and Euler-Lagrange equations guide the iterative process to 

improve accuracy. By using Lagrange multipliers, VIM handles 

constraints and enhances solution accuracy. To use the VIM to 

find a solution for the system of nonlinear fractional differential 

in (18), rewrite the problem so that it takes the format. 

 

       

       

       
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D U t f U U U N U U U g t

D U t f U U U N U U U g t

D U t f U U U N U U U g t







  

  

  

                                 (19) 

where 0 1k   concerning some initial criteria      1 1 2 20 , 0 , , 0n kU h U h U h   . The correction functional with 

respect to the system of nonlinear fractional equations in (19) is approximately formulated as: 

       
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U t U t D U s f U s U s N U s U s g s ds
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U t U t D U s f U s U s N U
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













     
  

     
  

   





   2( ), , ( ) ( )n n

ks U s g s ds 
  

       (20) 

the term situated as the second one from the right is referred to as the correction where   

 
 

   
1

0

1
,k

t r r

t kD U t t s U s ds
r





 
 
    and 1 2, , , k     signifies confined variations and are generic Lagrange 

multipliers. The Lagrange multiplier λ can be obtained by  
 

 
11

1
1 !

n n
t

n
 


  

 
, where n represents the number of 

recurrences of the differentials. To utilize Lagrange multipliers in the VIM approach, we begin by introducing these multipliers into the 

auxiliary functional formulation. These additional terms are brought in to enforce constraints or boundary conditions imposed on the 

problem one is working on. This inclusion of Lagrange multipliers transforms the auxiliary function into a function that depends on both the 

unknown function and these multipliers. They can be found best using variation theory and by making the above functions (20) fixed, we get 

the following fixed conditions: 

 
 

 

'
0

1 0, 1, 2, ,

s tj

j s t

s

s j k











  
  

Thus, the multipliers of Lagrange can be denoted as 1 1, 2, ,j for j k    . Replacing 1j   in the correctional functional 

equation (20) gives the resulting iteration formulations: 

              
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
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            (21) 
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From these first estimates 
0 0 0

1 1 2 2, , , k kU h U h U h   , we may derive all the approximations 1 2, , ,n n n

kU U U . Lastly, 

1, 2, ,j k , we use the nth term  N

jU t  to approximatively solve    lim
N

k j
j

U t U t


 . 

 

The New Iterative Method (NIM) 

The NIM was developed in the 21st century and has recently 

become an extremely well-known method in the connected 

sciences. The method can be used to solve ordinary and partial 

differential equations without making any assumptions about 

diminishing or linearizing effects. This makes it the best 

alternative method. NIM is based on simple ideas and is 

straightforward to implement on computers with symbolic 

computation software such as Maple. This method is superior to 

numerical methods because it eliminates rounding errors and 

requires fewer computing resources. In many circumstances, it 

has been demonstrated to be more effective than other 

procedures (Zada et al., 2021; Nawaz et al., 2020) to name a few. 

Considering the basic NIM procedure for a given functional 

equation depicted as:  

                                                    

     

     
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 
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 

    

    

    

                                                 (22) 

where 𝑁 is considered a nonlinear operator from  Banach’s space  B B ,  f t  is a  known function, and 0 1k   for all 

values ranging from 1 to inclusive, On both sides of equation (22), the fractional  integral operator kI  is applied, which is the inverse of 

kD
(the operator) . We seek to obtain the new iterative solutions and the expansion of the solution to equation (22), concerning NIM's 

interpretation, can be presented in the following manner/series format: 
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
















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













                                                                       (23) 

 

Based on the idea of Daftardar-Geiji and Jaffari (2006), the nonlinear function that is seen on the right-hand side of (22) can be broken 

down into the following components:  
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         (24) 

When equations (23) and (24) are substituted into equation (22), we get: 
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       

       

       

1 1

2 2

1
1 1 1 1

1 0

0 0 0 0

1
2 2 2 2

2 0

0 0 0 0

1

0

0 0 0

k k

k k

h t h t h

h h h h

k k

h t h t h

h h h h

k k
k k k k

h k t h t h

h h h

U f t U D U t D U t

U f t U D U t D U t

U f t U D U t D U t

 

 

 

  

   

  

   

 

  

    
        

    

    
        

    

 
     

 

   

   

  
0h





  
  

  


                  (25) 

The relation of recurrence can be written as 

 
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                             (26) 

Then it leads to the relation 

   
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                     (27) 

and we obtain 

0 0

k k

v v

U f U
 

 

 
  

 
                                                         (28) 

Finally, the solutions of n term estimations of (22) are provided by 0 1 2 1nU U U U U       

4. Computational Experiments 
 

This section illustrates the numerical solution of model (7) based 

on the fractional order model of leptospirosis. Because fractional 

order differential equations lack accurate analytical solutions, 

semi-analytical approximation methods are presented to 

overcome this fractional order differential equation problem. 

Regarding the numerical solution of the system (7), we employed 

the VIM and NIM discussed in the previous section, to proffer 

numerical solutions. 

 

Application of VIM on Fractional Order Leptospirosis Model 

By applying the VIM formula to solve the Leptospirosis 

Fractional order model (7), we obtain the correction functional as 

follows; 
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The initial conditions of the variables are  0 0 0 0 0100, 20, 30, 50 10H H H V VS I R S and I       combined with values of the 

parameters in Table 1 are inserted in the above equation. In the numerical simulations, we integrate available data, grounding the simulations 

in empirical findings. Simultaneously, assumed values are strategically introduced to address uncertainties in specific regional data, 

enhancing adaptability. These choices contribute to a comprehensive numerical framework, combining existing knowledge with thoughtful 

assumptions for exploring the dynamic intricacies of Leptospirosis spread. As such, the solution as follows.  
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Application of NIM on Fractional Order Leptospirosis Model 

Applying the NIM procedure to compute the Leptospirosis Fractional order model in (7), we obtain the following equations. 
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        (30) 

After transforming the unknown terms into infinite series and evaluating the nonlinear terms concerning the new iterative concept, the 

estimated solution is presented as 

7 2 8 3

13 4 22 5 3/2

2

6.580429508 10 5.188031459 10

2.014517145 10 2.299607

1

981 10 0.0008179322706

5.

00-1.255886013 0.01709961999

...

20-5.8610 127069 1.361509842 0.0000156515970 88112 14 8 3

H

H

S t t

I t

t

t t t

tt

t 

 

    

  







 

   8 3

13 4 22 5 3/2

2 13 3

3/2 8 5/2

...

30 5.205213097 -1.231544819 -0.

10

2.014517145 10 2.299607981 10 0.2685318063

7.715173100001423242583

0.2428377159

50-7.997951536 0.01

44 10

1.171556959 10

24

H

V

R t t

S

t

t t t

t

t

t

t

t



 





     

 









 



2 3

11 4 20 5 3/2

2 3

11 4

7840000 0.0002898312344 0.001303355628

...

10 7.867059552 -0.01924160000 -0.00045394

7.080468976 10 8.254818517 10 .24692586

36269 -0.00130335

30

7.0

5628

80468976 10 8.254818

V

t t

t t

t

t

I t

t

t t

t

 



    



 







 

20 5 3/2517 10 0.24694949 .53 ..t t    

Here, we present comprehensive tabular and graphical representations of the numerical assessment results for VIM and NIM techniques 

applied to solve the Fractional-order leptospirosis model (7). The Tables offer a detailed analysis of the outcomes obtained during the 

experimentation process. 

  



 

79 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol43no3.9 

Malaysian Journal of Science 43(3): 68-85 (September 2024) 

Table 2. Comparison between VIM and NIM for Leptospirosis Human Fractional Model. 

Days VIM NIM VIM NIM VIM NIM 

  HS t   HS t   HI t   HI t   HR t   HR t  

0 100.00000 100.00000 20.0000000 20.0000000 30.00000 30.000000 

1 99.68757617 99.60453810 18.56993202 18.27423993 31.26700102 31.53055749 

2 99.45781321 99.44169743 17.56498476 17.62715340 32.15214960 32.10325260 

3 99.26794909 99.31711830 16.77181856 17.15411336 32.84640998 32.52145021 

4 99.10396857 99.21234079 16.11664599 16.76983370 33.41622348 32.86087923 

5 98.95839873 99.12021483 15.55883537 16.44144656 33.89830128 33.15072160 

6 98.82661250 99.03707419 15.07272349 16.15217727 34.31587841 33.40586948 

7 98.70551628 98.96074062 14.64102175 15.89210873 34.68462057 33.63512621 

8 98.59294782 98.88979530 14.25173000 15.65481035 35.01539483 33.84419968 

9 98.48735654 98.82325248 13.89646415 15.43583678 35.31577455 34.03703533 

10 98.38761633 98.76039476 13.56945680 15.23196689 35.59094024 34.21649175 

 

Table 3. Comparison between VIM and NIM for The Leptospirosis Vector Fractional Model. 

Days VIM NIM VIM NIM 

  VS t   VS t   VI t   VI t  

0 50.00000000 50.000000 10.0000000 10.0000000 

1 48.10115515 47.46426898 11.89953979 12.49366212 

2 46.79834431 46.40363800 13.20261734 13.53646822 

3 45.79384992 45.58256866 14.20713973 14.34369900 

4 44.98219532 44.88429720 15.01866656 15.03019388 

5 44.30484125 44.26375440 15.69578809 15.64027672 

6 43.72483161 43.69790510 16.27549453 16.19660039 

7 43.21744123 43.17311249 16.78253423 16.71257461 

8 42.76572616 42.68052253 17.23386667 17.19690544 

9 42.35807446 42.21400716 17.64111347 17.65561817 

10 41.98672198 41.76912096 18.01204373 18.09308338 

Graphical representations of the SIR-SI compartment dynamics within the context of our study on Fractional leptospirosis modeling provide 

visual insights into the disease spread and transmission patterns. Below, you will find a series of informative graphs illustrating the behavior 

of this compartment. 
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(a) (b) 

Figure 1. Plots of the model (7) for Susceptible humans when α = 0.5; (a) VIM (b) NIM. 

 

  
(a) (b) 

Figure 2. Plots of the model (7) concerning Infected humans when α = 0.5; (a) VIM (b) NIM. 

 

  
(a) (b) 

Figure 3. Plots for model (7) regarding Recovery human when α = 0.5; (a) VIM (b) NIM. 
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(a) (b) 

Figure 4: Plots of model (7) for Susceptible vector when α = 0.5; (a) VIM (b) NIM. 

 

 

  
(a) (b) 

Figure 5: Plots of (7) concerning Infected vector when α = 0.5; (a) VIM (b) NIM. 
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The graphical representation for better visualization of Tables 2 and 3 is presented below. 

  

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6: Plot (a - e) showing a comparison of VIM and NIM for the SIR-SI Fractional leptospirosis model. 

 

5. Discussion of Results 

 

Table 2 presents a comparison of the VIM and NIM methods in 

terms of their impact on susceptible, infected, and recovered 

human populations over 10 days. The two methods started with 

the same values for susceptible humans, infected humans, and 

recovered humans on day 0. Both methods led to a gradual 

decrease in the number of susceptible humans and an increase in 

the number of recovered humans over the 10 days, but the rate 

of change varied. On day 10, the VIM method showed a slightly 

higher percentage of susceptible humans and a lower percentage 

of infected humans compared to the NIM method, indicating that 

it is slightly more effective in reducing the number of susceptible 

humans, while the NIM method is slightly less effective in 

reducing the number of infected humans. Overall, both methods 

were effective in reducing the number of susceptible and infected 

humans and increasing the number of recovered humans, but the 

VIM method had a slightly better performance in reducing the 
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number of susceptible humans and the NIM method had a slightly 

worse performance in reducing the number of infected humans. 

Table 3 presents the susceptible and infected vectors at 

different times for both methods. At time zero, the susceptible 

vector had a value of 50 and the infected vector had a value of 10. 

Both methods resulted in a decrease in the values of the 

susceptible vector and an increase in the values of the infected 

vector over time, but the rates of change varied. The trend 

continued with VIM showing slightly higher values than NIM. 

However, VIM performed slightly better than NIM, as indicated by 

higher values for the susceptible vector and lower values for the 

infected vector. These differences may be attributed to the 

different numerical procedures employed by the two methods. 

The graphs in Figures 1, 2, and 3 displaying the populations of 

susceptible humans, infected humans, and recovered humans are 

generated from a comparative assessment of the VIM and NIM. 

In Figures 1, and 2, both methods demonstrated a gradual decline 

in the count of susceptible and infected humans while they depict 

a concurrent rise in the count of recovered humans in Figure 3. 

Figures 4 and 5 display changes in the populations of susceptible 

and infected vectors at different time points for NIM and VIM 

approaches. It is shown that, both methods led to a reduction in 

the number of susceptible vectors in Figure 4 and an increase in 

the number of infected vectors in Figure 5.  

Figure 6 illustrates the comparison of the behavior of various 

classes (compartments) being examined under values of α in 

terms of their disease status. The dynamics of all model 

populations are depicted, revealing that at α=0.5, most 

populations decline except for classes of recovery human and 

infected vector. It becomes evident that the class of Susceptible 

humans decreases with VIM, by approximately 1.6% and 1.2% 

with NIM, (a), and Infectious humans also decrease with VIM by 

6.43% and NIM by 4.77%, (b). Conversely, the class of susceptible 

vectors gradually decreases by 8.01% and 8.23% as captured by 

both VIM and NIM respectively, (d), while the class of recovered 

human increases by approximately 35.59% with VIM and 34.22% 

with NIM, (c), and a notable increase is observed in the infected 

vector in (e). 

It is important to note that these results are based on the 

specific conditions and parameters of the model used in this study 

and may not be generalizable to other models or scenarios. 

Further studies may be needed to validate these findings and 

explore the effectiveness of other numerical methods for solving 

similar models. 

 

6. Conclusion 
 

In this study, a fractional Leptospirosis model was simulated 

using the VIM and the NIM. As regards the model, the solutions 

obtained from the two methods are relatively close. We 

compared the effectiveness of these two methods by analyzing 

their results on a simulated population using a susceptible-

infected-recovered (SIR) model. Our analysis showed that both 

VIM and NIM can be effective in modeling the spread of infectious 

diseases. However, we found that VIM performed slightly better 

than NIM in terms of accuracy and convergence rate. Specifically, 

VIM showed a faster convergence rate and smaller error values 

compared to NIM. Overall, the findings suggest that VIM can be a 

useful tool for modeling the spread of infectious diseases. 

However, further research is needed to explore the potential of 

these methods in modeling more complex infectious disease 

scenarios. In conclusion, this study highlights the importance of 

using effective simulation/solving methods in understanding the 

dynamics of infectious diseases. Future research could explore 

the applicability of VIM and NIM in solving diseases with multiple 

strains, spatial dynamics, or dynamic human behaviors.  

These findings could affect future research or practical 

applications such as developing a real-time simulation/tool that 

integrates current data to predict the future spread of the 

disease, aiding public health officials in making timely and 

informed decisions. As well as to optimize intervention strategies, 

such as vaccination campaigns or public health measures, with 

the aim of minimizing the impact of the disease. By using VIM and 

NIM, we were able to gain insights into the spread of diseases in 

human populations and vector populations and identify the 

strengths and weaknesses of these two methods. Overall, the VIM 

method is a better approach for simulating the fractional 

Leptospirosis fractional model. The results obtained will aid in 

advancing our understanding and potential management 

strategies for leptospirosis. Finally, all computations and 

algorithms are implemented using version 2021 of the Maple 

software. 

 

7. Acknowledgement 
 

The authors express gratitude to the editors and reviewers for 

their valuable and constructive feedback. 

 

8. References  
Ahmad, H. (2018). Variational iteration method with an auxiliary 

parameter for solving  

differential equations of the fifth order, Nonlinear Science Letters 

A, 9(1), 27–35. 

Altaf, K. M., Islam S., & Afzal, K. S. (2014). Mathematical Modeling 

Towards the Dynamical Interaction of Leptospirosis.  Applied 

Mathematics and Information Sciences, 8, 1049-1056. 

Alwehebi, F., Hobiny, A., & Maturi, D. (2023). Variational Iteration 

Method for Solving Time Fractional Burgers Equation Using 

Maple. Applied Mathematics, 14, 336-348. 

Akogwu, B. O. (2022). Approximate Solutions of Malaria Disease 

Transmission Model: Using Mult-Step Differential Transform 

Method, FUDMA Journal of Science, 6(6), 182-194. 

Ali, Z., Rabiei F., Rashidi, M. M., & Khodadadi, T. (2022). A 

fractional-order mathematical model for COVID-19 outbreak 

with the effect of symptomatic and asymptomatic 

transmissions. European Physical Journal Plus, 137, 395. 

Aslan, I. H., Baca-Carrasco, D., Lenhart, S., & Velasco-Hernandez, 

J. X. (2021). An age structure model with impulse actions for 



 

84 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol43no3.9 

Malaysian Journal of Science 43(3): 68-85 (September 2024) 

Leptospirosis in livestock cattle. Journal of Biological Systems, 

29(1), 75–105. 

Ayoade, A, A., Ibrahim, M. O., & Odetunde, O. (2018). Analytical 

Solution of a Fractional Order Cholera Model. Nigerian Journal 

of Scientific Research, 17, 158-164. 

Batiha, B., Ghanim, G., & Batiha, K. (2023). Application of the New 

Iterative Method (NIM) to the Generalized Burgers–Huxley 

Equation, Symmetry, 15. 

Bhalraj,A., & Azmi-Mohd, H. (2021). Analytical and Numerical 

Solutions of Leptospirosis Model. International Journal of 

Mathematics and Computer Science, 16(3), 949–961. 

Chen, Y., Liu, F. Yu, Q. & Li, T. (2021). Review of fractional epidemic 

models. Applied Mathematical Modelling, 97, 281–307. 

Chong, J. W., Tiong, W. K., Labadin, J. 1., & Sahak, N. (2022). 

Mathematical modeling of Leptospirosis spread in Malaysia. 

Mathematical Modeling and Computing, 9(1), 18–25. 

Daftardar-Gejji, V., Jafari, H. (2006).  An iterative method for 

solving nonlinear functional equations, Journal of Mathematical 

Analysis and Applications, 316(2), 753–763.  

Darzi, R. & Agheli, B. (2018). An analytic approach for the system 

of fractional differential equations by means of innovative 

homotopy perturbation method. Mathematica Moravica, 22(1), 

93-105. 

Falade, K. I., & Tiamiyu, A. T. (2020a). Computatıonal Algorıthm 

for the Numerıcal Solutıon of Systems of Volterra Integro-

Dıfferentıal Equatıons, Academic Journal of Applied 

Mathematical Sciences, 6, 66-76. 

Falade, K. I., & Tiamiyu, A. T. (2020b) Numerical solution of partial 

differential equations with fractional variable coefficients using 

new iterative method (NIM), Mathematical Sciences and 

Computing, 3, 12-21. 

Falade, K. I., Tiamiyu, A. T., & Isa U. (2021). Numerical Comparison 

of Runge-Kutta (Rk5) and New Iterative Method (Nim) for 

solving Metastatic Cancer Model. Malaysian Journal of 

Computing, 6, 758-771. 

 Falade, K. I., Tiamiyu, A. T., Adio, A. K., Tahir, H. M., Abubakar, U. 

M., & Badamas, S. M. (2023). Computational Relationship of the 

Surface Area, and Stiffness of the Spring Constant on Fractional 

Bagley-Torvik Equation. Turkish Journal of Science & Technology, 

18(1), 23-31. 

Gomez, A. A., Lopez, M. S., Mullere, G. V., Lopez, L. R., Sione, W., 

& Giovina, L. (2022). Modeling Leptospirosis outbreaks in 

relation to hydroclimatic variables in the northeast of Argentina. 

Heliyon 8(2022). 

Gallego, M. A., Simoy, M. V. (2021). Mathematical modeling of 

leptospirosis: A dynamic regulated by environmental carrying 

capacity. Chaos, Solitons & Fractals, 152, 114-125. 

He, J. H. (2007). Variational iteration method-some recent results 

and new interpretations. Journal of Computational and Applied 

Mathematics, 207(1), 3-17. 

Khan, M. F., Alrabaiah, H., Altaf, S. M., Farooq, K. M., Mamat, M. 

& Asjad, M. I. (2021). A new fractional model for vector-host 

disease with saturated treatment function via singular and non-

singular operators. Alexandria Engineering Journal, 60, 629–

645. 

Khan, M. A., Saeed, I., & Khan, S. A. (2014). Mathematical 

Modeling towards the dynamical Interaction of Leptospirosis. 

Applied Mathematics and Information Sciences, 8(3), 1049-

1056.  

Mousa, M. G., & Altaie, H. O. (2022). Efficient analytical method 

for the solution of some fractional-order nonlinear differential 

equations. International Journal of Nonlinear Analytical 

Application, 13(2), 401–408. 

Mukdasai, K., Sabir, Z., Asif, M., Raja, Z., Sadat, R., Ali, M. R., & 

Singkibud, P. (2022). A numerical simulation of the fractional 

order Leptospirosis model using the supervised neural Network. 

Alexandria Engineering Journal, 61, 12431–12441. 

Nawaz, R., Ali N., Zada, L., Shah, Z., Tassaddiq, A., & Alreshidi, N. 

A. (2020). Comparative analysis of natural transform 

decomposition method and new iterative method for fractional 

foam drainage problem and fractional order modified 

regularized long-wave equation,” Fractals, 28(7) article 

2050124. 

Ngoma, H. D., Kiogora, R. P., & Chepkwony, I. (2022). A Fractional 

Order Model of Leptospirosis Transmission Dynamics with 

Environmental Compartment. Global Journal of Pure and 

Applied Mathematics, 18, 81-110. 

Ozlem, D. O.  (2020). Modeling the impact of temperature on 

fractional order dengue model with vertical transmission. 

International Journal of Optimization and Control: Theories and 

Applications, 10, 85-93. 

Paisanwarakiat, P., & Thamchai, P. (2021). Optimal Control of a 

Leptospirosis Epidemic Model. Science and Technology Asia, 

26(1), 9-17. 

Pan, W., Li, T., & Ali, S. (2021). A fractional order epidemic model 

for the simulation of outbreaks of Ebola. Advances in Difference 

Equations, 161, 1-21. 

Peter, O. J., Oguntolu, F. O., Mayowa, M. O., Oyeniyi, A. O., Jan, 

R., & Khan, I. (2022). Fractional order mathematical model of 

monkeypox transmission dynamics. Physica Scripta, 97, 084005. 

Ramashis B., & Biswa, F. (2022). Fractional optimal control of 

compartmental SIR model of COVID-19: Showing the impact of 

effective vaccination., International Federation of Automatic 

Control, 55(1), 616–622. 

Raouf, R., Zarin, A., & Yusuf, U. W. (2022). Existence theory and 

numerical solution of leptospirosis disease model via 

exponential decay law. AIMS Mathematics, 7(5), 8822–8846. 

Shihab, M. A., Taha, W. M., Hameed, R. A., Jameel, A., & Ibrahim, 

S. M. (2023). Implementation of variational iteration method for 

various types of linear and nonlinear partial differential 

equations. International Journal of Electrical and Computer 

Engineering, 13(2), 2131-2141. 

Shirazian, M. (2023). A new acceleration of variational iteration 

method for initial value problems. Mathematics and Computer 

in Simulation, 204, 640-644.  

Tebyakin, A. D., Kalutsky, L. A., Yakovleva, T. V., & Krysko, A. V. 

(2023). Application of Variational Iterations Method for 

Studying Physically and Geometrically Nonlinear Kirchhoff 

Nanoplates: A Mathematical Justification. Axioms, 12,   



 

85 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol43no3.9 

Malaysian Journal of Science 43(3): 68-85 (September 2024) 

Tomar, S., Singh, M., Vajravedu, K., & Ramos, H. (2023). 

Simplifying the variational iteration method: A new approach to 

obtain the Lagrange multiplier. Mathematics and Computer in 

Simulation, 204, 640-644. 

Yin, F., Song, J., & Cao, X. (2013). A General Iteration Formula of 

VIM for Fractional Heat- and Wave-Like Equations. Journal of 

Applied Mathematics, Article ID 428079. 

Zabidi, N. U., Abdul-Majid, Z., Kilicman, A., & Rabiei, F. (2020). 

Numerical Solutions of Fractional Differential Equations by 

Using Fractional Explicit Adams Method, Mathematics, 8(1675), 

1-23. 

Zada, L., Nawaz, R., Ahsan, S., Nisar, K. S., & Baleanu, D. (2021). 

New iterative approach for the solutions of fractional order 

inhomogeneous partial differential equations, AIMS 

Mathematics, 6(2), 1348–1365. 

 


