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Abstract: This study examines stability by conducting a nonlinear stability analysis on the thermohaline flow of a steady, viscous, 
incompressible couple-stress fluid, utilizing a generalized energy method. It is observed that the linear and nonlinear thresholds are the 
same, and the physics of the onset of convection is fully captured. The couple-stress and solute gradient parameters are found to have a 
stabilizing effect on the system. 
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1. Introduction 

 

Hydrodynamic stability theory has been the subject of intensive 

study for decades, as it predominantly concerns the identification 

of critical Rayleigh number values that depict the stability region 

[see Joseph (1965, 1966); Straughan (2004)]. While linear theory 

does not guarantee stability, it does establish conditions for the 

instability of hydrodynamic systems. Under certain conditions, 

the energy technique of nonlinear theory ensures the stability of 

hydrodynamic systems but cannot conclusively prove instability. 

Thus, the use of a nonlinear approach to study the effects of finite 

perturbations on flow becomes vital. Initial credit for the energy 

method goes to Reynolds (1895) and Orr (1907), but it was later 

improved by Serrin (1959) and Joseph (1965, 1966, 1976). This 

classical energy technique, successful in many problems [Rionero, 

1968; Galdi, 1985; Galdi & Straughan, 1985], has been confronted 

in many situations. Later, numerous authors (Galdi & Padula, 

1990; Straughan, 2004; Rionero & Mulone, 1988; Mulone & 

Rionero, 1989) employed and improved the classical energy 

theory, and its generalization is now considered more successful 

in analyzing many complex theories. 

Industrial and technological applications of couple-stress fluids, 

which include pumping fluids like synovial joint fluid, synthetic 

fluids, liquid crystals, animal blood, and the theory of lubrication, 

have attracted researchers to study the properties and behaviors 

of such fluids. The mathematical relation for Couple-stress fluid 

flow, as proposed by Stokes (1966), has distinct characteristics 

like couple stress forces, body couples, and non-symmetric stress 

tensors. Stokes (1984) provides an excellent description of this 

theory. Sunil et al. (2013, 2014, 2019) examined the stability 

problem of couple-stress fluid using the energy method. It is 

observed that the critical thermal Rayleigh values for linear 

instability and nonlinear stability coincide, indicating that 

subcritical instabilities are not present. It is known that saline can 

easily adhere or suspend in any fluid, and in certain cases, like 

animal blood, saline is present in the fluid. It is, therefore, 

important to consider this aspect when studying the stability of 

couple-stress liquids.  
This paper aims to discuss the thermohaline convective stability 

in couple-stress fluids and analyze the impact of the presence of 

couple stress and solute concentration on convection, utilizing 

both linear and nonlinear methods of stability. The calculated 

critical Rayleigh number values depict the onset of convection and 

also provide an estimate of the stability region. These estimates 

may be useful for experiments to control heat transfer in such 

liquids. This paper identifies research opportunities and 

challenges for future research and has, to the best of our 

knowledge, not appeared in the literature thus far. 

 

 

2. Mathematical Model   
 

Consider a layer of couple stress fluid between two parallel 

plates d distance apart, extending infinitely in the horizontal 

direction, with constant viscosity. The temperature 𝑇𝑎, 𝑣 at the 

lower and upper surfaces 𝑧 = 𝑑/2 and −𝑑/2 is considered to be 
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fixed as 𝑇𝑙 , 𝑇𝑢, respectively. The temperature gradient  𝛽𝑇 (=

|
𝑑𝑇

𝑑𝑧
| ) is maintained across the layer. The fluid layer heated and 

soluted from below confines with stress free boundaries and a 

gravitational force acting vertically downward along the z-

direction. 

 
Figure 1. Pictorial representation of the mathematical model. 

 

The governing equations of the convective system of the fluid with couple stress forces (by using Boussinesq approximation) are (Sunil et 

al., 2011; Choudhary & Sunil, 2019): 

 

𝛻 ⋅ �⃗�𝑠 = 0 
(1) 

𝜌𝑟 (
𝜕

𝜕𝑡
+ �⃗�𝑠 ⋅ 𝛻) �⃗�𝑠 = −𝛻𝑝1 + 𝜌𝑟[1 − 𝛼(𝑇 − 𝑇𝑎 𝑣) + 𝛼′(𝐶 − 𝐶𝑎 𝑣)]�⃗� + (𝜇 − 𝜇′𝛻2)𝛻2�⃗�𝑠 (2) 

𝜕𝑇

𝜕𝑡
+ �⃗�𝑠 ⋅ 𝛻𝑇 = 𝜅𝛻2𝑇,                                                                                                                                  (3) 

𝜕𝐶

𝜕𝑡
+ �⃗�𝑠 ⋅ 𝛻𝐶 = 𝜅′𝛻2𝐶. (4) 

 Here, 𝜌𝑓 is the fluid density 𝜌𝑟  is the reference density, 

�⃗�𝑠 is the fluid velocity, �⃗� is the acceleration due to gravity, 𝑡 is the 

time, 𝑝1 is the pressure field, 𝜇 is the coefficient of viscosity, 𝜇′ is 

the coefficient of visco-elasticity, 𝜅 is the thermal diffusivity, 𝜅′ is 

the solute diffusivity, 𝛼 is the thermal expansion coefficient and 

𝛼′is the solute expansion coefficient. The solute concentrations 

𝐶𝑎 𝑣 at the lower and upper planes are fixed as 𝐶𝑙, 𝐶𝑢, 

respectively, while maintaining the solute gradient  𝛽𝐶 (= |
𝑑𝐶

𝑑𝑧
|) 

across the layer. The basic state (‘b’) is quiescent, and is given by:                                                                                              

 

�⃗�𝑠 = 0⃗⃗,  𝑝1 = 𝑝1𝑏(𝑧),  𝜌𝑓 = 𝜌𝑓 𝑏(𝑧) = 𝜌𝑟(1 + 𝛼𝛽𝑇𝑧 − 𝛼′𝛽𝐶𝑧),  𝑇 = 𝑇𝑏(𝑧) = −𝛽𝑇𝑧 + 𝑇𝑎 𝑣, 𝐶 = 𝐶𝑏(𝑧)

= −𝛽𝐶𝑧 + 𝐶𝑎 𝑣,  𝛽𝑇 =
𝑇𝑙 − 𝑇𝑢

𝑑
,  𝛽𝐶 =

𝐶𝑙 − 𝐶𝑢

𝑑
, 

(5) 

To perform stability analysis, let us introduce perturbations 

�⃗�𝑠
′ , 𝑝1

′ ,  𝜌′, 𝜃and 𝛾  representing velocity, pressure, density, 

temperature and concentration, respectively, to the basic state. 

The perturbations equations are: 

 

𝜌0

𝜕�⃗�𝑠
′

𝜕𝑡
+ 𝜌𝑟�⃗�𝑠

′
⋅ 𝛻�⃗�𝑠

′
= −𝛻𝑝1

′ + 𝜇𝛻2�⃗�𝑠
′

− 𝜇′𝛻4�⃗�𝑠
′

+ 𝜌𝑟𝑔(𝛼𝜃 − 𝛼′𝛾)𝒌, (6) 

𝛻 ⋅ �⃗�𝑠
′

= 0, (7) 

𝜕𝜃

𝜕𝑡
+ �⃗�𝑠

′
⋅ 𝛻𝜃 = 𝜅𝛻2𝜃 + 𝛽𝑇𝑤 

(8) 

𝜕𝛾

𝜕𝑡
+ �⃗�𝑠

′
⋅ 𝛻𝛾 = 𝜅′𝛻2𝛾 + 𝛽𝐶𝑤. 

(9) 

Boundary conditions (BC’s) on �⃗�𝑠
′ , 𝜃, 𝛾 which satisfy a plane tilling periodicity are:  

�⃗�𝑠
′ = 0,  𝜃 = 0,  𝛾 = 0 at 𝑧 = ±

𝑑

2
 (10) 
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3. Stability Analysis by Generalized Energy Method 
 

To analyze stability, the perturbation equations (6) – (9) are written in non-dimensional form (dropping *) as follows: 

𝜕�⃗�𝑠

𝜕𝑡
+ �⃗�𝑠 ⋅ 𝛻�⃗�𝑠 = −𝛻𝑝1 + 𝛻2�⃗�𝑠 − 𝐹𝐶𝛻4�⃗�𝑠 + 𝑅

1
2𝜃𝒌 −

𝑆
1
2

𝐿𝑒
𝛾𝒌 (11) 

𝛻 ⋅ �⃗�𝑠 = 0, 
(12) 

𝜕𝜃

𝜕𝑡
+ �⃗�𝑠 ⋅ 𝛻𝜃 = 𝛻2𝜃 + 𝑅

1
2𝑤, 

(13) 

𝜕𝛾

𝜕𝑡
+ �⃗�𝑠 ⋅ 𝛻𝛾 =

1

𝐿𝑒
𝛻2𝛾 + 𝑆

1
2𝑤 

(14) 

The below mentioned dimensionless quantities and parameters are used for non dimensionalizing the perturbed equations 

 

𝑡∗ =
𝜇

𝜌0𝑑2 𝑡,  �⃗�∗
𝑠

=
𝑑

𝜈
�⃗�𝑠

′ ,     𝑝1
∗ =

𝑑2

𝜌𝑟𝜈2 𝑝1
′ ,     𝜃∗ =

𝑅
1
2

𝛽𝑇𝑑
𝜃,    𝛾∗ =

𝑆
1
2

𝛽𝐶𝑑
𝛾, 𝑧∗ =

1

𝑑
𝑧, 𝑅 =

𝑔𝛼𝛽𝑇𝜌𝑟𝑑4

𝜇𝜅
,    𝑆

=
𝑔𝛼′𝛽𝐶𝜌𝑟𝑑4

𝜇𝜅′
, 𝐿𝑒 =

𝜅

𝜅′
   and  𝐹 𝐶 =

1

𝜈

𝜇′

𝜌𝑟𝑑2
 

(15) 

 

Here, 𝑅 is the thermal Rayleigh number, 𝑆 is the solute Rayleigh number, 𝐹𝑐 is the couple-stress parameter and  𝐿𝑒 is the Lewis number. 

 Multiplying equations (11) by �⃗�𝑠 (13) by𝜃, (14) by 𝛾 and integration over 𝑉 and utilizing the given conditions, we obtain:   

 

1

2

𝑑‖�⃗�𝑠‖2

𝑑𝑡
= −‖𝛻�⃗�𝑠‖2 − 𝐹𝑐‖𝛻2�⃗�𝑠‖2 + 𝑅

1
2 ⟨𝑤𝜃⟩ − 𝑆

1
2 ⟨𝑤𝛾⟩, (16) 

1

2

𝑑‖𝜃‖2

𝑑𝑡
= −‖𝛻𝜃‖2 + 𝑅

1
2⟨𝑤𝜃⟩, 

(17) 

1

2

𝑑‖𝛾‖2

𝑑𝑡
= −

1

𝐿𝑒
‖𝛻𝛾‖2 + 𝑆

1
2⟨𝑤𝛾⟩ 

(18) 

 

Here, the symbol ⟨⋅⟩ is for integration over 𝑉and  ‖ ⋅ ‖ is the 𝐿2(𝑉) norm. 

     From Eq. (16) – (17), an 𝐿2energy 𝐸0(𝑡) is constructed and the change of 𝐸0(𝑡) is  

 

𝑑𝐸0

𝑑𝑡
= 𝐼𝑎 − 𝐷𝑎, (19) 

where 

𝐸0 =
1

2
‖𝜃‖2 +

𝜆1

2
‖�⃗�𝑠‖2 −

𝜆2

2
‖𝛾‖2, (20) 

𝐼𝑎 = (1 + 𝜆1)𝑅
1
2⟨𝑤𝜃⟩ − 𝜆1

𝑆
1
2

𝐿𝑒
⟨𝑤𝛾⟩ − 𝜆2𝑆

1
2⟨𝑤𝛾⟩,   (21) 

𝐷𝑎 = ‖𝛻𝜃‖2 + 𝜆1‖𝛻�⃗�𝑠‖2 + 𝜆1𝐹𝑐‖𝛻2�⃗�𝑠‖2 −
𝜆2

𝐿𝑒
‖𝛻𝛾‖2, (22) 

 

with 𝜆1 and 𝜆2 being positive coupling parameters. 

 In equation (20), the term 
𝜆2

2
‖𝛾‖2 has a negative sign, which indicates that the system consumes energy due to the solute concentration. 

The energy consumed by the solute is less than the energy produced by the velocity and temperature. The energy dissipated by the solute is 

less than the energy dissipated by these two factors. This always ensures that all the RHS terms of equations (20) and (22) are less than the 

LHS terms. 

We define 

𝑚𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝐻

𝐼𝑎

𝐷𝑎
 (23) 

where 𝐻 is the space of admissible solutions, and take 𝑚𝑚𝑎𝑥, so that 
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𝑑𝐸0

𝑑𝑡
≤ −𝑒0𝐷𝑎 (24) 

with    𝑒0 = 1 − 𝑚𝑚𝑎𝑥. 

Using Poincare inequality, it is established that 

𝐷𝑎 ≥ 𝜋2 (‖𝜃‖2 + 𝜆1(1 + 𝜋2𝐹𝑐)‖�⃗�𝑠‖2 −
𝜆2

𝐿𝑒
‖𝛾‖2) ≥ 𝐸0 (25) 

Eq. (25) is hold if 
𝜆2

𝐿𝑒
‖𝛾‖2 < 𝜆1(1 + 𝜋2𝐹𝑐)‖�⃗�𝑠‖2. 

Using the (24) and (25), one finds 

𝑑𝐸0

𝑑𝑡
≤ −𝑒0𝐸0, 

and by integration of this between limits 0 and 𝑡, the energy estimate is 

𝐸0(𝑡) ≤ 𝑒𝑥𝑝( − 𝑒0𝑡)𝐸0(0). (26) 

Thus, the exponential fast decay of𝐸 assures conditional stability for all 𝐸0(0). 

 

Variational Problem 
Equation (23) is solved by using calculus of variation to maximize 

at the critical value 𝑚𝑚𝑎𝑥. By using the transformations �̂⃗�𝑠 =

√𝜆1�⃗�𝑠  and  𝛾 = √𝜆2𝛾, the Euler-Lagrange equations are given 

as (by dropping caps)  
 

−2𝐹𝑐𝛻4�⃗�𝑠 + 2𝛻2�⃗�𝑠 + 𝑅
1
2(1 + 𝜆1)

1

𝜆
1
2

𝜃�̂�

− 𝑆1/2(1 + 𝜆2)
1

𝜆1

1
2𝜆2

1
2

𝛾�̂� = 2𝛻𝜂, 
(27) 

2𝛻2𝜃 + 𝑅1/2(1 + 𝜆1)
1

𝜆1

1
2

𝑤 = 0 (28) 

2

𝐿𝑒
𝛻2𝛾 + 𝑆

1
2 (𝜆2 +

𝜆1

𝐿𝑒
)

1

𝜆1

1
2𝜆2

1
2

𝑤 = 0 (29) 

 
where 𝜂 is introduced as Lagrange’s multiplier, due to the 
solenoidal property of  �⃗�𝑠. 

The third component of curlcurl of equation (27) is written as  

−2𝐹𝛻6𝑤 + 2𝛻4𝑤 + 𝑅
1
2(1 + 𝜆1)

1

𝜆1

1
2

𝛻1
2𝜃

− 𝑆1/2 (𝜆2 +
𝜆1

𝐿𝑒
)

1

𝜆1

1
2𝜆2

1
2

𝛻1
2𝛾 = 0 

(30) 

 

Now, consider a plane tiling solution        

(𝑤, 𝜃, 𝛾) = [𝑊(𝑧), 𝛩(𝑧), 𝛤(𝑧)]𝑔(𝑥, 𝑦) (31) 

 

Here, 𝛻1
2𝑔 + 𝑎2𝑔 = 0, where ‘𝑎’ is the non-zero wave number 

(Straughan, 2001; Chandrasekhar, 1981). Thus, the equations 
(28)-(30) are represented as 

 

−2𝐹𝑐(𝐷2 − 𝑎2)3𝑊 + 2(𝐷2 − 𝑎2)2𝑊

−
𝑅

1
2𝑎2

𝜆1

1
2

(1 + 𝜆1)𝛩

+
𝑆

1
2𝑎2

𝜆1

1
2𝜆2

1
2

(𝜆2 +
𝜆1

𝐿𝑒
) 𝛤 = 0, 

(32) 

2(𝐷2 − 𝑎2)𝛩 +
𝑅1/2

𝜆1

1
2

(1 + 𝜆1)𝑊 = 0 (33) 

2

𝐿𝑒
(𝐷2 − 𝑎2)𝛤 +

𝑆
1
2

𝜆1

1
2𝜆2

1
2

(𝜆2 +
𝜆1

𝐿𝑒
) 𝑊 = 0 (34) 

 

and the BC’s are 

𝑊 = 0,  𝐷2𝑊 = 0,  𝐷4𝑊 = 0,  𝛩 = 0,  𝛤 = 0 

at 𝑧 = ±
1

2
 

(35) 

 

The functions 𝑊, 𝛩 and 𝛤, satisfying (35) are given by  

𝑊 = 𝑙0 𝑐𝑜𝑠 𝜋 𝑧, 𝛩 = 𝑚0 𝑐𝑜𝑠 𝜋 𝑧𝛤 = 𝑛0 𝑐𝑜𝑠 𝜋 𝑧, (36) 

 

where 𝑙0, 𝑚0 and 𝑛0 are constants. Using solution (36) in (32)-
(34), the polynomial equations with coefficients of 𝑙0, 𝑚0 and 𝑛0 
are obtained. Condition for existence of nontrivial solution of 
these equations’ yields  

𝑅𝑒 =
4(1 + 𝑥)3{1 + 𝐹1(1 + 𝑥)}

𝑥
1
𝜆1

(1 + 𝜆1)2
+

𝑆1𝐿𝑒 (𝜆2 +
𝜆1
𝐿𝑒

)
2

𝜆2(1 + 𝜆1)2
 (37) 
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where 𝑅𝑒 =
𝑅

𝜋4
,  𝑆1 =

𝑆

𝜋4
, 𝑥 =

𝑎2

𝜋2
, 𝐹1 = 𝜋2𝐹𝑐. 

The optimal value of 𝜆1 and 𝜆2 is obtained from the conditions 
𝑑𝑅𝑒

𝑑𝜆1
= 0 and 

𝑑𝑅𝑒

𝑑𝜆2
= 0,  respectively, and are found to be 

 

𝜆1 = 1 and 𝜆2 =
1

𝐿𝑒
.               (38) 

 

Using (38) in equation (37), the Rayleigh number becomes 

 

𝑅𝑒 =
(1+𝑥)3[1+𝐹1(1+𝑥)]

𝑥
+ 𝑆1.            (39) 

 

𝑅𝑒 attains minimum when 

 

3𝐹1𝑥4 + 2(1 + 4𝐹1)𝑥3 + 3(1 + 2𝐹1)𝑥2 − (1 + 𝐹1) = 0.     (40) 

From the condition 
𝑑𝑅𝑒

𝑑𝑥
= 0, the critical wave number values are 

derived numerically using the Newton-Raphson method. From 
equation (39), the required critical thermal Rayleigh number 𝑅𝑐𝑒 
is obtained. 

It is thus crucial to perform a standard normal mode technique on 
the perturbed equations (6) – (9), without including nonlinear 
terms, to investigate linear instability and determine their 
solution in the form (31) for the comparison of nonlinear results. 
Using the boundary conditions (35), the thermal Rayleigh number 
is obtained as 

𝑅ℓ =
(1+𝑥)3[1+𝐹1(1+𝑥)]

𝑥
+ 𝑆1 = 𝑅𝑒.                                (41)  

Equation (35) simplifies to𝑅ℓ =
(1+𝑥)3

𝑥
= 𝑅𝑒, in the absence solute 

gradient(𝑆1 = 0) and of couple stress parameter (𝐹1 = 0), i.e., 
the linear instability boundary ≡ the nonlinear stability boundary, 
indicating no sub-critical instabilities region exists. 

 

 

 

Table 1. Dependence of the 𝑅𝑐  on (𝐹1). 

 
Table 2. Dependence of the 𝑅𝑐 on 𝑆1, for various values of 𝐹1. 

 
 
 
 
 
 
 
 
 
 

 

  

𝐹1 𝑥𝑐 𝑅𝑐 

0 0.5 106.75 

1 0.387 116.46 

2 0.366 125.99 

3 0.357 135.49 

4 0.351 144.99 

5 0.348 154.48 

6 0.346 163.97 

7 0.344 173.45 

8 0.343 182.94 

9 0.342 192.42 

10 0.341 201.90 

𝑆1 𝑅𝑐 𝑅𝑐 𝑅𝑐 

 
(

𝐹1 = 1 
𝑥𝑐 = 0.387

) (
𝐹1 = 5
𝑥𝑐 = 0.348

) (
𝐹1 = 9
𝑥𝑐 = 0.342

) 

100 116.46 154.48 192.42 

200 216.46 254.48 292.42 

300 316.46 354.48 392.42 

400 416.46 454.48 492.42 

500 516.46 554.48 592.42 

600 616.46 654.48 692.42 

700 716.46 754.48 792.42 

800 816.46 854.48 892.42 

900 916.46 954.48 992.42 
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4. Results and Discussion 

 The critical wave number 𝑥𝑐 = 𝑥𝑐𝑒 = 𝑥𝑐ℓ and critical thermal 

Rayleigh number 𝑅𝑐 = 𝑅𝑐𝑒 = 𝑅𝑐ℓ were a function of couple stress 

parameter 𝐹1 and solute gradient 𝑆1. The variations given in 

Tables 1 and 2 are illustrated graphically in Figures 2 and 3. 

 
Figure 2. Plot of 𝑅𝑐versus 𝐹1 for S1=100. 

 

From figure 2, it is found that the convection is advanced due to 

couple-stress parameter 𝐹1, as 𝑅𝑐 increases with an increase in 

𝐹1. Therefore, this parameter attempts to stabilize the convection 

in fluid. Additionally, the linear and nonlinear Rayleigh numbers 

are found to be the same. Table  1 shows that the couple-stress 

fluid stabilizes thermally more as compared to the standard fluid.    

 

 
FIGURE 3. Plot of 𝑅𝑐versus S1 for different values of 𝐹1. 

The variation of 𝑅𝑐with variation in 𝑆1 for various values of 𝐹1 is 

given in Table 2 and Figure 3. This clearly demonstrates the 

stabilizing effect of the solute parameter 𝑆1  because 𝑅𝑐 increases 

with an increase in 𝑆1. 

5. Conclusion 

 

The results obtained using the generalized energy technique for 

the nonlinear system are the same as those obtained by linear 

theory, indicating that the boundaries of stability and instability 

coincide. There is no possibility of the existence of any subcritical 

instability. This finding is significant because it suggests that by 

controlling the parameter values, the fluid can be stabilized, and 

heat transfer can also be controlled. An increase in the values of 

parameters shows that the couple stresses and the presence of 

solute stabilize the system. Consequently, couple stress fluids are 

observed to be more stable than ordinary fluids. Therefore, in 

applications where higher stability requirements exist, such fluids 

can be utilized. 

The study could be enhanced by including the effects under rigid 

type boundary conditions and also by considering viscosity as a 

function of temperature and pressure. 
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