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DEGREE EXPONENT SUM ENERGY OF COMMUTING GRAPH FOR DIHEDRAL GROUPS

Mamika Ujianita Romdhini*®, Athirah Nawawi?®**, Chen Chuei Yee®

Abstract: For a finite group G and a nonempty subset X of G, we construct a graph with a set of vertex X such that any pair of distinct
vertices of X are adjacent if they are commuting elements in G. This graph is known as the commuting graph of G on X, denoted by I; [X].

The degree exponent sum (DES) matrix of a graph is a square matrix whose (p, q)-th entry is d,,pd"q + d,,qd”z’ whenever p is different from

q, otherwise, it is zero, where dv,, (or dvq) is the degree of the vertex vy, (or vertex, v;) of a graph. This study presents results for the DES

energy of commuting graph for dihedral groups of order 2n, using the absolute eigenvalues of its DES matrix.
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1. Introduction

A group is a set of elements associated by a binary
operation, which satisfies closure property, has a unique
identity element, and unique inverses for each element in
the group (Aschbacher, 2000). Suppose now that G is any
finite group and Z(G) is the center of G. The commuting
graph of G on a nonempty subset X of G, denoted by I'¢[X],
is a graph whose vertex set is X, and two distinct vertices are
adjacent if they commute in G. If X = G\Z(G), then we write
I'; == I'¢[X] and I';; is called the commuting graph of G. This
graph is a simple undirected graph introduced by Brauer and
Fowler (1955).

The commuting graph of G on X has been further
associated with the spectral graph theory, where matrices
are associated with a graph. The adjacency matrix
A(T¢[X]) = [apq] of I'¢[X], is an n X n matrix, defined by
its entries @, are equal to 1 if there is an edge between the
vertices vp, V4, and 0 otherwise. Clearly, A(Fg[X]) is a
symmetric matrix with zero diagonal entries since I'g[X] is a
simple graph. For real numbers 4 and an n X n identity
matrix I,,, the characteristic polynomial of I'g[X] is defined
by Pargix)(4) = det (AI, — A(I'g[X])). The roots of
Pacrgxp(4) = 0 are 44,45, ..., 4, and are known as the
eigenvalues of I'g[X].
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By the definition of adjacency matrix, the (ordinary)
spectrum of the finite graph I'¢[X] is the list of eigenvalues
A, Az, ..., Ay, with  their  respective  multiplicities
ki, ks, ..., k,, as exponents, denoted by Spec(I'¢[X]) =
{likl),lng), ...,Af,’:'")}. Furthermore, the energy of I'¢[X] is
the sum of the absolute eigenvalues of A(I'¢[X]), which is
E(I¢[X]) = X1-1l4;l. Other than that, Gutman found this
definition in 1978 by considering a chemical molecule as a
graph and estimating the m-electron energy.

Several studies regarding the commuting graph involve
the spectrum and energy of its adjacency matrix. For finite
non-abelian groups, Dutta and Nath (2017a) and Dutta and
Nath (2017b) have described the formula for the spectrum
of the commuting graph. Laplacian spectrum, signless
Laplacian spectrum and their corresponding energies of the
commuting graph of dihedral groups can be found in Dutta
and Nath (2018) and Dutta and Nath (2021). Furthermore,
the discussion of the adjacency energy for the subgroup
graph of the dihedral group has been done by Abdussakir et
al. (2019). In 2022, Sharafdini et al. discussed the commuting
graph for some finite groups with abelian centralizers and
found the energy for some particular families of AC groups.

Apart from the adjacency matrix, Laplacian matrix, and
signless Laplacian matrix, another matrix related to the
degree of vertices in a graph defined by Basavanagoud and
Eshwarachandra in 2020 is the principal focus point here,
called the degree exponent sum (DES) matrix. A limited
number of studies central to the DES matrices for the
commuting graph have been found. This fact motivates us to
have a detailed description of the DES energy for the
commuting graphs of G.
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In this paper, we focus on I'¢[X] constructed on the non-
abelian dihedral group of order 2n,n = 3, denoted as
D,, ={(a,b: a® = b?> = e,bab = a~'). The center of D,,,,
Z(D,,,) is either {e} if n is odd or {e, a%} if n is even. The
centralizer of the element a' in the group D3y, is Cp,, (@) =
{a:1<i<n}and for the element a‘b is either
Cp, (a'b) ={e,a’b}, if mn is odd or Cp, (a'b)=

{e, az, a'b, a%”b}, if n is even.
2. Preliminaries

Now, we are ready to see the definition of the degree
exponent sum (DES) matrix, considering d,,p as the degree of
vp, which is the number of vertices adjacent to w,,.
Moreover, if every vertex has the same degree r, then the
graph is called r-regular graph.

Definition 2.1. (Basavanagoud & Eshwarachandra, 2020)
The DES matrix of order n X n associated with I'[X] is given
by DES(I'¢[X]) = [des,,| whose (p, q)-th entry is

d, d, .
T
0, ifp=gq
Therefore, the DES energy of I'¢[X] can be defined as
follows:

Epps(Tg[X]) = ZMiL
i1

where 44, 4;, -, 4,, are the eigenvalues (not necessarily
distinct) of DES(I'¢[X]).
In this section, we include some previous results
beneficial for the next section. The following lemma is
important for computing the characteristic polynomial of the

commuting graph I'g.

Lemma 2.1: (Ramane & Shinde, 2017) If a, b, c and d are real
numbers, and J,, is an n X n matrix whose all elements are
equal to 1, then the determinant of the (nq + ny) X (nq +
n,) matrix of the form

QA+ a)l,, —aJy,
_d]nzxnl

—CJnyxn,

A+ b)I,,, — b],,|

can be simplified as given in the following expression
@+am '@ +b" " ((A- (ny - Da)@A - (np —
1)b) — nynycd),

where1 <ny,n; <nandnqy +n,; =n.

A graph with n vertices, where every vertex is adjacent
to all other vertices, is called a complete graph K,, and the
complement of K,, is denoted by K,,. The following lemma is
the result of the spectrum of K,, which is useful in
computing Epps(Fg[X]).
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Lemma 2.2: (Brouwer & Haemers, 2010) If K, is the
complete graph on n vertices, then its adjacency matrix is
Jn — I, and the spectrum of K, is {(n — 1)@, (-1)®@~D}.

3. Main Results

This section presents several results on the degree
exponent sum (DES) energy of the commuting graph on the
dihedral group of order 2n. We divide n into two cases,
namely when n is odd and n is even. This is strictly for n >
3 since the dihedral group is abelianforn = 1 and n = 2.

Recall that the dihedral group of order 2n is Dy, =
(a,b: a™ = b* =e,bab = a~1). Let the set of rotation
elements of D,,, which are not members of Z(D,,), be
Gy ={a1<i<n\Z(Dz,) G, =
{aib: 1<i< n} be the set of reflection elements of Dy,,.
The following is the result of the degree of each vertex in the
commuting graph of D,,,.

written as and

Theorem 3.1: Let I'p, be the commuting graph of Dy,.
Then,
1. the degree of a’ in I'p,, ,denoted as d i, is given by

d ‘_{n—Z, if nis odd

@~ ln-3, if nis even’

2. the degree of ab in I'p, , denoted as d iy, is given by

d = {O, if nis odd
a'’b — |1, if nis even’

Proof.

1. If m is odd, then Z(D,) ={e}. Since Cp, (a')=
{a':1<i<n}, then dyi = n— 2, removing e and a’
itself. If n is even, then Z(D,,) = {e, a%}. Consequently,
we have d,; = n — 3, removing e, a§, and al itself.

2. If nis odd, the element a‘b, where 1 < i < n, has the
centralizer Cp, (a'b) = {e, a’b} of size two, then there
is no edge between any pair of vertices in I'g. Therefore,
d,i, = 0.1f nis even, the centralizer of each element a‘b
is given by

Cp,, (a'b) = {e,az,a'b,az*'b}, forall 1 < i< n.
Then, by excluding e and a% which are the central
elements in D, there exists only an edge between the
vertices a'b and az*'b in I'¢, for all 1 < i < n. Hence,
d,i, = 1.

Consequently, the isomorphism of the commuting graph
with the common type of graphs can be seen in the
following result:

Theorem 3.2: Let X be any nonempty subset of D5,,.
1.If X = G4, then
Ip, [X] = K;y, where m = |G4].
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2.If X = Gy, then
~ K,
Fp,, [X] = {1 — regular graph,

if nis odd
if nis even

Proof:

1. The centralizer of a’, for 1<i<mn, is Cp,, (ai) =
{ al:1<i< n} of size n. This implies that every vertex
of G4 is adjacent to all vertices in the set itself. Thus,
Ip, [G1] = K,,,, wherem = |G].

2. It follows from Theorem 3.1 that the degree of aib in
Ip, [G,]isallzerofor 1 < i < n, wherenisodd. Hence,
FDZn[GZ] = K,,, acomplement of the complete graph on
n vertices. Now, suppose n is even. Again, by Theorem
3.1, the degree of a'b in I'p, [G,] is all 1. This implies
that I'p, [G,] is disconnected, with each component
isomorphic to the 1-regular graph.

We illustrate the two theorems above via the following
examplesforn = 4andn = 5.

Example 1. Let I'p, be the commuting graph of Dg, where
Dg = {e, a, a?, a3, b, ab, a’b, a®b}, Z(Dg) = {e,a?},
G, ={a a3}, G, = {b, ab, a’b, a®b}, Cp, (b) =
{e, a%,b, a’b} = Cp, (a®b), Cp, (ab) =
{e, a%,ab, a®b} = Cp, (a3b). Using the information on the
centralizer of each element in Dg, the commuting graph of
Dg is as in Figure 1.

a.—.aa

Figure 1. Commuting graph of Dg.

From Figure 1, it is clear that the degree of each vertex a
and a? is one. In particular, if X = G4, then I'p [G4] is a
complete graph on two vertices, K,. However, for each
vertex alb, for 1 < i < 4, its degree is also one. If X = G,
then I'p, [G,] is a disconnected 1-regular graph with two
components isomorphic to K.

Example 2. Let I'p, , be the commuting graph of D1q, where
Do ={e, a, a?, a3, a* b, ab, a’b, a3b, a*b},

Z(Dqo) = {e}, G, ={a,a? a’a'}, Gy ={b,
ab, a’b, a®b, a*b}, Cp,, (a'b) = {a'b}, and Cp,, (a') =
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{ai: 1<i< 4}. Using the information on the centralizer of
each element in D4, the commuting graph of D4 is as in
Figure 2.

ab ° “a3b

Figure 2. Commuting graph I, .

From Figure 2, it is clear that the degree of each vertex
al, where 1 < i < 4 is three. In particular, if X = G4, then
er[Gﬂ is a complete graph on four vertices, K4. However,
for each vertex a'b, for 1 <i <5, its degree is zero. If
X = G;, then I'p  [G,] is a disconnected graph with five
isolated vertices and isomorphic to the complement of a
complete graph on five vertices, Ks.

Theorem 3.3: Let X be any nonempty subset of D5,,.
1.If X = G4, then

Epgs(Tp,, [X]) = {
2.I1f X = G,, then
Epgs(Ip,, [X]) = 4(n—1).

4(n—2)""1, ifnisodd
4(n—3)""2, ifniseven

Proof.

2. When n is odd. From Theorem 3.2 (1), I'p, [G1] = Ky,
where m = |G{| = n — 1, removing e in Z(D,,). Then,
every I'p, [G4]
Subsequently, we can construct an (n—1) X (n—1)
DES matrix of Ip, [G1], DES(I'p, [G1]) = [desyq]
whose (p,q)-th entry is despq = (n—2)""2+ (n—
2)"2 = 2(n —2)""2, for p # q, and 0 otherwise:

vertex of has degreen — 2.

DES(TI'p,, [G4])
0 2(n—2)"? 2(n—2)"?
_|2(n—2)"2 0 2(n—2)"2
2(n —'2)"-Z 2(n —'2)"—2 6
o1 - 1
=2@m-2m2|7 O T
1 1 0

In other words, the DES matrix of I'p, [G1] is the product
of 2(n — 2)" 2 and the adjacency matrix of K,,_;. Based

DOI: https://doi.org/10.22452/mjs.sp2022n01.6
Malaysian Journal of Science 41 (Special Issue 1): 40-46 (September 2022)


https://doi.org/10.22452/mjs.sp2022no1.6

Malaysian Journal of Science

Special Issue

is given by {(n -
2)W, (=1)®™-2} since the adjacency energy of K,,_4 is
In—2]|+ (n—2)|-1| = 2(n — 2), the DES energy of
I'p, [G4] 2m—-2)"2%2-2(n—-2)=4(n—
2)n 1,

on Lemma 2.2, Spec(K,_1)

will  be

When nis even. From Theorem 3.2 (1), I'p, [G1] = K,
where m = |G{| = n — 2, removing e and azin Z(Dyy).
Then, every vertex of Ip, [G1] has degreen — 3.
Consequently, we can construct an (n —2) X (n —2)
DES matrix of TIp, [G1], DES(Ip, [G1]) = [desy,]
whose (p,q)-th entry is des,, = (n— 3" 3+ (n—
3)"3 = 2(n —3)" 3, for p # q, and O otherwise:

DES(Ip,, [G4])
0 2(n—3)"3 2(n—3)"3
_[2m-3)"3 0 2(n—3)"3
2n—3)"3 2(m—3)"3 .. 0
=2m-3m3|1 9 70

Thus, the DES matrix of Ip, [G1] is the product of
2(n — 3)" 3 and the adjacency matrix of K,,_,. Based
on Lemma 2.2, Spec(K,_,)is given by {(n—
3)®, (=1)®™-D} since the adjacency energy of K,,_» is
[n—3|+ (n—-3)|-1| = 2(n — 3), the DES energy of
I'p, [G4] 2m-3)"2%-2(n—-3)=4(n—
3)n-2,

will  be

2. When n is odd. From Theorem 3.2 (2), I'p, [G,] = K,,
where n = |G,|. Then, all of the vertices have degree
zero. Correspondingly, we can construct an n X n DES
matrix of I'p, [G>], DES(I"DZn[GZ]) = [dequ] whose
(p.@)-thentryisdesy, = 0°+0° = 2, forp # q,and 0
otherwise:

0 2 2
DES(I'p, [G]) = 2 ? 2
2 2 0

0 1 1

=21 0 1

11 - 0

In other words, DES(Ip, [G,]) = 2A(K,) is the
multiple of two adjacency matrices of K,. Thus,
Epgs(Tp,,[G2]) =2(In— 1]+ (n — D|-1]) = 4(n -
1).

When n is even. From Theorem 3.2 (2), Ip, [G;] is a
regular graph with degree one. Then, we can construct an
nxn DES matrix of Ip, [G], DES(I"DZn[GZ]) =

43

[despq| whose (p,q)-th entry is des,q = 11 + 11 =2,
for p # q, and 0 otherwise:

0o 2 -2 o1 - 1
s -[f et 0
2 2 - 0 11 0

It implies that DES(I"DZn[GZ])=2A(Kn). Thus,
Epes(Tp,,[G2]) = 4(n—1).

The DES energy of the commuting graph I'p, [X] for X =
G4, G, are given by the following examples, for n = 4 and
n=>5.

Example 3. In Figure 1, we have shown the commuting graph
of Dg. When X = G4, since we only have two vertices a and
a3, we have a 2 X 2 DES matrix of I'p,[G1] with the non-
diagonal entries are 11 + 11 = 2, and the diagonal entries
are zero. We then obtain

DES(Ip,[G1]) = [‘2’ (2) .

Furthermore, the characteristic

DES(I'p,[G4]) is

polynomial  of

Pps(ry, 6,y (D) = det (a1, -

DES(FDS[GI])) = det [_)LZ _)Lz

the eigenvalues of DES(FDS[Gl]) are A=2 and A = —2.
Therefore, the DES energy of I'p [G4] is EDES(I"D8 [G4]) =
2| +|-2| =4 =4(4—3)*2.

] = A% — 4. It implies that

For the case X = G, we know that the set of vertices is
{b, ab, a’?b, a®b}. Here, we have a 4 X 4 DES matrix of
I'p,[G;] with the non-diagonal entries are 1! + 11 =2,

while the diagonal entries are zero. Then, we get

0 2 2 2
_12 0 2 2
DES(I'p,[G,]) = 2 2 0 2|
2 2 2 0
Additionally, the characteristic  polynomial of

DES(I'p,[62])  is  Ppgsry, i, = det (A1, -

DEs(r,,s[Gz])) =(A+2)3(A—6). It implies that the
eigenvalues of DES(I"DB[GZ]) are A = —2 with multiplicity
3 and a single A = 6. Therefore, EDES(I"DS[GZ]) =3|-2|+
6] = 12 = 4(4 — 1).

Example 4. In Figure 2, we have presented the commuting
graph of Dqq. For X = G4, we have a 4 X 4 DES matrix of
I'p,,[G41] with the non-diagonal entries are 33 + 33 = 54,
while the diagonal entries are zero. We then obtain

0 54 54 54
54 0 54 54
54 54 0 54
54 54 54 0

DES(I'p,,[G1]) =
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the characteristic  polynomial of

PDEs(r,,m[(;l])(/D = det (/“4 -
DEs(r,,m[Gl])) = (A + 54)3(1 — 162). It implies that the
eigenvalues of DES(I"D10 [Gl]) A=-54 with
multiplicity 3 and a single A = 162. Therefore, the DES
energy of I'p, [G1]is Epgs(I'p,,[G1]) = 3|—54| + [162| =
324 = 4(5 —2)5L,

Additionally, for X = G5, we have a 5 X 5 DES matrix of
I'p,,[G2] with the non-diagonal entries are 0° + 0° = 2,

Furthermore,

DES(I'p,,[G4]) is

are

and the diagonal entries are zero. We then obtain

[0 2 2 2 2]
IZ 0 2 2 2
R
l2 2 2 2 OJ

Hence, the characteristic polynomial of DES(I‘Dw[GZ])
is Pogs(ry, c;1)(A) = det (A5 — DES(Ip,,[62])) = (A +
2)¥(A—8). It implies that the eigenvalues of
DES(I'p,,[G2]) are A = —2 with multiplicity 4 and 2 =8
with multiplicity 1. Therefore, EDES(FDI0 [Gz]) =4|-2| +
18] = 16 = 4(5 — 1).

Theorem 3.4: Let I'p, be the commuting graph of Dj,.
Then, the characteristic polynomial of DES(I"DZn) is

L Ppgg(ry, YD) = (A + 20— 2)® )" " @+ 21 (22 —
Ch-D+20m-2)""VA+4n-2)"(n—-1) -
n(n — 1)), for n is odd, while

2. Ppgs(y, ) = (A + 200 = 3" @+ 21 (22 -
Ch-D+20-3)"HA+4(n-1D(n-3)"2 -
n(n — 2)3), forn is even.

Proof.

1. When nis odd, from Theorem 3.1, we have d ;i = n — 2
and d i, = 0, forall 1 < i < n. Then, using the fact that
Z(D3y,) = {e}, we have 2n — 1 vertices in I'p, . The set
of vertices consists of n — 1 vertices of the form a, for
1 <i<n-—1,and n vertices of the form a'b, for 1 <
i < n. Consequently, the DES matrix for I'p, isa (2n —
1) x (2n—1) matrix, DES(I'p, ) = [des,q| whose
entries are:

(i) despg=m—-2)"2+m-2)""2=2(n—-2)"72
forp#+q,and1<p,gq<n-1,

(i) despg=m—-2)°+(@0@)"2=1for1<p<n-1
andn<q<2n-1,

(i) des,q = ()" 2+ (n—2)°=1,forn<p<2n-1
and1<g<n-—1,

(iv) des,q = (0)°+(0)°=2,forp#q, n<p<2n-
landn<q<2n-1,

(v) desy,q =0, forp = q.

We can construct DES(I"DZn) as follows:

44

DES(I'p,,)
0 2(n—2)"2 2n-2)"2 1 1
|2(n—2)("*2> 0 2(n—-2)"2 1 1
- | 2 -2)"? 2m-2)"2 .. 0 1.1 -
1 L0 2
| 1 1 1 20
| 1 1 1 2 2
_ [2(71 - 2)(n—2) Un-1—Ih-1) ](n—l)xn
]nx(n—l) ZUn - n)
_h Tz]

In the current case, DES(I"DZH) is divided into four
blocks, where the first block is T¢, which is a block of
(n— 1) X (n — 1) matrix with zero diagonal and all non-
diagonal entries as 2(n — 2)™~2)_|n the next two blocks,
we have T, and T3 matrices, which are of the size
(n—1) xn and nx (n— 1), respectively, whose all
entries are equal to one. The last block is T4, which is an
n X n matrix with zero diagonal, and all non-diagonal
entries are equal to two. Then, we obtain the
characteristic polynomial of DES(I'p, ) from the
following determinant
PyEs(ry, )A) = |Alzn_1 — DES(I'p,,)|
_|G+2m -2 D)1, 4 -2 - 2", ,
—Jax@m-1)

_](n—l)xn
@A+2)0, - 2],

By usingLemma 2.1, witha =2(n —2)® 2, b =2,¢c =
1,d=1,n; =n—1 and n, = n, we get the required
result.

2. When n is even, using Theorem 3.1, we know that d ;i =
n—3 and di, = 1, for all1 < i < n. Then, using the
fact that Z(D,,) = {e, ag}, we have 2n — 2 vertices in
I'p, . The set of vertices consists of n — 2 vertices of the
form at, with i # n,% and n vertices of the form alb, for
1 < i < n. Correspondingly, the DES matrix for I'p, isa
(2n—2)x (2n—2) matrix, DES(I'p, )= [desy,]
whose entries are:

(i) despg=m—=3)"3+m—-3)"3=2n-3)"73,
forp#q,and1 <p,q<n-2,

(i) despg=m—-3)1+ D" 3=n-2,
n—2andn—-1<q<2n-2,

(i) desyq =MD" 3+Mm-3)'=n-2,
p<2n—2andl<q<n-2,

(iv) despq = (D1 + (D' =2, for p# q,
2n—2andn—-1<q<2n-2,

(v) desyq =0, forp =gq.

for 1<p<
for n—1<

n—1<p<

We can construct DES(I‘DZH) as the following:
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[ 0 2(n —3)®3 2n-3)" n-2 n-2 - n
2(n—-3) 0 2m-3)"%in-2 n-2 - n
|2(n—§)("’3) Z(n—é)("’3) 0 in—z n;z ‘ n
=2 n-2 T TTm=2 T oz
| n—2 n—2 n—2 L2 0
[ n_2 n_2 n_2 2 2 .
_ [Z(n =3)"I(p 2~ In) =2 @-2xn
(n - 2)]n><(n—2) 2(]11 - In)
_[U1 U
T U3 UL

In the current case, DES(I"DZn) is divided into four
blocks, where the first block we have U, which is a block
of (n — 2) x (n — 2) matrix with zero diagonal and all
non-diagonal entries as 2(n — 3)™~3). The next two
blocks are U, and U3, which are of the size (n — 2) X n
and n X (n — 2), respectively, whose all entries are
equal to n — 2. The last block is Uy, whichisan n xXn
matrix with zero diagonal, and all non-diagonal entries
are equal to two. Then, we obtain the characteristic
DES(I'p,,) from the

polynomial of following

determinant
Ppes(ry, ) = |Mlzn_2 — DES(I'p,, )|
_|@+2m -3 N1, ;-2 -3)"F), , —(—2)@m-2)xn
—(n = 2)nxm-2) @+2)1,-2J,
By using Lemma 2.1, witha =2(n —3)®3 b =2, ¢ =
n—2,d=n—-2,n,=n-2 and n, =n, we obtain

the result.

The illustration of the above theorem is given by the
following examples forn = 4 and n = 5.

Example 5. In Example 1, we obtained the commuting graph

of Dg. Since the degree of each vertex is one, then we will
have a 6 X 6 DES matrix of I'p as follows:

DES(I'p,) =

NNNNNO
NNNNON
NNNONN
NNONNN
NONNNN
OSNDNDNDNN

Hence, the characteristic polynomial of DES(I'p,) is
Ppis(ry,) (D) = det (a1 - DES(rp,)) = A+ 2)(A +
2)3(A2 —81—120) = (A+2)5(4—10). Using Maple™,
we confirmed that the eigenvalues of DES(I‘DS) ared = -2
with multiplicity 5 and a single A =10. Therefore,
Epes(Ip,) = 51-2] + (10| = 20.

Example 6. In Example 2, we have presented the commuting
graph of D19. Then, we have a 9 X 9 DES matrix of I'p_ as

follows:

45

0 54 54 54:1 1 1 1 17
54 0 54 54:1 1 1 1 1
54 54 0 54:1 1 1 1 1
54 54 54 0:1 1 1 1 1
DES(I'p,,)=|1 1 1 1.0 2 2 2 2|
1 1 1 1:2 0 2 2 2
1 1 1 1:2 2 0 2 2
1 1 1 1.2 2 2 0 2
l1 1 1 1:2 2 2 2 o

Hence, the characteristic polynomial of DES(I'p,,) is
Ppis(ry,,)(A) = det (Al — DES(I'p,,)) = (A +
54)3 (A +2)*(A2 — 1704 + 1276). Using Maple™, we
confirmed that the eigenvalues of DES(I‘DIO) are A = —54
with multiplicity 3, A = —2 with multiplicity 4 and 4 = 85 +
3V661. Thus, Epgs(Ip,,) =3|—-54|+4|-2|+ |85+
3V661| + |85 — 3,/661] = 340.

Theorem 3.5: Let I'p, be the commuting graph of D,. Then
1. for the odd n,

Epgs(I'p,,) =4m—2)""1+4(n-1),

2. and for the even n,

EDES(FD ) :{20, ) ?fnzél-.

2n 4n—-3)"2+4(n-1), ifn>4

Proof.

1. By Theorem 3.4 (1) for the odd n, the characteristic
polynomial of DES(T'p, ) has four eigenvalues, with the
first eigenvalue is ; = —2(n — 2)™~2 of multiplicity n —
2, and the second eigenvalue is 4, = —2 of multiplicity
n— 1. The quadratic formula gives the other two
eigenvalues, whichare 43,4, = (m —2)" 1+ (n—1) +

J((n —2)1—(n— 1))2 +n(m—1), and both of
them are positive real numbers. Hence, the DES energy
forIp, is

Epps(Ip,,) = (n—2)|-2(n - 2)" %[+ (n — D|-2]|

+n-2"1+mn-1)

+ \/((n —2r 1t —m—-1)) +nm-1)

=2n-2)"14+2n-1D)+2n-2)"1+2(n—-1)
=4n-2)"1+4(n-1).

2. By Theorem 3.4 (2) for the even n, the characteristic
polynomial of DES(I'p, ) has four eigenvalues, with the
first eigenvalueis ; = —2(n — 3)™3 of multiplicity n —
3, and the second eigenvalue is 4, = —2 of multiplicity
n— 1. The quadratic formula gives the other two
eigenvalues, which leads to two cases. First, whenn = 4,
they are a positive real number, and the other is negative.
It is evident from Example 5 that EDES(['DZ,,) = 20.
Meanwhile, for n > 4, the last two eigenvalues are
positive real numbers given by 43,4, = (n —3)" 2 +
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n—-1)+ \/((n —-3)"2 - (n— 1))2 +n(n — 2)3.
Thus, the DES energy for I'p, is
Epps(I'p,,) = n—3)|-2(n = 3)"3[+ (n — D|-2|

+|{m=-3)"2+@n-1)

+ \/((n -3)"2—-(n- 1))2 +n(n-—2)3
=4n-3)"?2+4(n-1).

4. Conclusion

This paper has given the general formula of degree
exponent sum (DES) energy of commuting graphs for
dihedral groups. In particular, EDEs(rDz,,) =4(n-2)""1+
4(n — 1) when n is odd. On the other hand, there are two
cases for n is even, namely Epgs(Ip,,) = 20 if n = 4 and
Epgs(p, ) =4m—-3)"2+4(n—-1) if n>4. This
happens as a result of the difference between the quadratic
polynomial roots, which is a part of the corresponding
characteristic polynomial of DES(I'p, ).
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