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Abstract: For a finite group 𝐺 and a nonempty subset 𝑋 of 𝐺, we construct a graph with a set of vertex 𝑋 such that any pair of distinct 

vertices of 𝑋 are adjacent if they are commuting elements in 𝐺. This graph is known as the commuting graph of 𝐺 on 𝑋, denoted by 𝛤𝐺[𝑋]. 

The degree exponent sum (DES) matrix of a graph is a square matrix whose (𝑝, 𝑞)-th entry is 𝑑𝑣𝑝

𝑑𝑣𝑞 + 𝑑𝑣𝑞

𝑑𝑣𝑝  whenever 𝑝 is different from 

𝑞, otherwise, it is zero, where 𝑑𝑣𝑝  (or 𝑑𝑣𝑞
) is the degree of the vertex 𝑣𝑝 (or vertex, 𝑣𝑞) of a graph. This study presents results for the DES 

energy of commuting graph for dihedral groups of order 2𝑛, using the absolute eigenvalues of its DES matrix. 
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1. Introduction 
 

A group is a set of elements associated by a binary 

operation, which satisfies closure property, has a unique 

identity element, and unique inverses for each element in 

the group (Aschbacher, 2000). Suppose now that 𝑮 is any 

finite group and 𝒁(𝑮) is the center of 𝑮. The commuting 

graph of 𝑮 on a nonempty subset 𝑿  of 𝑮, denoted by 𝜞𝑮[𝑿], 

is a graph whose vertex set is 𝑿, and two distinct vertices are 

adjacent if they commute in 𝑮. If 𝑿 = 𝑮\𝒁(𝑮), then we write 

𝜞𝑮 ≔ 𝜞𝑮[𝑿] and 𝜞𝑮 is called the commuting graph of 𝑮. This 

graph is a simple undirected graph introduced by Brauer and 

Fowler (1955).  

The commuting graph of 𝑮 on 𝑿 has been further 

associated with the spectral graph theory, where matrices 

are associated with a graph. The adjacency matrix 

𝑨(𝜞𝑮[𝑿]) = [𝒂𝒑𝒒] of 𝜞𝑮[𝑿], is an 𝒏 × 𝒏 matrix, defined by 

its entries 𝒂𝒑𝒒 are equal to 1 if there is an edge between the 

vertices 𝒗𝒑, 𝒗𝒒, and 0 otherwise. Clearly, 𝑨(𝜞𝑮[𝑿]) is a 

symmetric matrix with zero diagonal entries since 𝜞𝑮[𝑿] is a 

simple graph. For real numbers 𝝀 and an 𝒏 × 𝒏 identity 

matrix 𝑰𝒏, the characteristic polynomial of 𝜞𝑮[𝑿] is defined 

by 𝑷𝑨(𝜞𝑮[𝑿])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝒏 − 𝑨(𝜞𝑮[𝑿])). The roots of 

𝑷𝑨(𝜞𝑮[𝑿])(𝝀) = 𝟎 are  𝝀𝟏, 𝝀𝟐, … , 𝝀𝒏 and are known as the 

eigenvalues of 𝜞𝑮[𝑿].  

By the definition of adjacency matrix, the (ordinary) 

spectrum of the finite graph 𝜞𝑮[𝑿] is the list of eigenvalues 

𝝀𝟏, 𝝀𝟐, … , 𝝀𝒎, with their respective multiplicities 

𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎 as exponents, denoted by 𝑺𝒑𝒆𝒄(𝜞𝑮[𝑿]) =

{𝝀𝟏
(𝒌𝟏)

, 𝝀𝟐
(𝒌𝟐)

, … , 𝝀𝒎
(𝒌𝒎)

}. Furthermore, the energy of 𝜞𝑮[𝑿] is 

the sum of the absolute eigenvalues of 𝑨(𝜞𝑮[𝑿]), which is 

𝑬(𝜞𝑮[𝑿]) = ∑ |𝝀𝒊|
𝒏
𝒊=𝟏 . Other than that, Gutman found this 

definition in 1978 by considering a chemical molecule as a 

graph and estimating the 𝝅-electron energy. 

Several studies regarding the commuting graph involve 

the spectrum and energy of its adjacency matrix. For finite 

non-abelian groups, Dutta and Nath (2017a) and Dutta and 

Nath (2017b) have described the formula for the spectrum 

of the commuting graph. Laplacian spectrum, signless 

Laplacian spectrum and their corresponding energies of the 

commuting graph of dihedral groups can be found in Dutta 

and Nath (2018) and Dutta and Nath (2021). Furthermore, 

the discussion of the adjacency energy for the subgroup 

graph of the dihedral group has been done by Abdussakir et 

al. (2019). In 2022, Sharafdini et al. discussed the commuting 

graph for some finite groups with abelian centralizers and 

found the energy for some particular families of AC groups. 

Apart from the adjacency matrix, Laplacian matrix, and 

signless Laplacian matrix, another matrix related to the 

degree of vertices in a graph defined by Basavanagoud and 

Eshwarachandra in 2020 is the principal focus point here, 

called the degree exponent sum (DES) matrix. A limited 

number of studies central to the DES matrices for the 

commuting graph have been found. This fact motivates us to 

have a detailed description of the DES energy for the 

commuting graphs of 𝑮.  
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In this paper, we focus on 𝜞𝑮[𝑿] constructed on the non-

abelian dihedral group of order 𝟐𝒏,𝒏 ≥ 𝟑, denoted as 

𝑫𝟐𝒏 = 〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. The center of 𝑫𝟐𝒏, 

𝒁(𝑫𝟐𝒏) is either {𝒆} 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝 or {𝒆, 𝒂
𝒏
𝟐} 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧. The 

centralizer of the element 𝒂𝒊 in the group 𝑫𝟐𝒏 is 𝑪𝑫𝟐𝒏 (𝒂
𝒊) =

{ 𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏 }  and for the element 𝒂𝒊𝒃 is either 

𝑪𝑫𝟐𝒏
(𝒂𝒊𝒃) = {𝒆, 𝒂𝒊𝒃} , if 𝒏 is odd or 𝑪𝑫𝟐𝒏

(𝒂𝒊𝒃) =

{𝒆, 𝒂
𝒏
𝟐, 𝒂𝒊𝒃, 𝒂

𝒏
𝟐
+𝒊𝒃}, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧. 

 

2. Preliminaries   
   

Now, we are ready to see the definition of the degree 

exponent sum (DES) matrix, considering 𝒅𝒗𝒑
 as the degree of 

𝒗𝒑, which is the number of vertices adjacent to 𝒗𝒑. 

Moreover, if every vertex has the same degree 𝒓, then the 

graph is called 𝒓-regular graph. 

Definition 2.1. (Basavanagoud & Eshwarachandra, 2020) 

The DES  matrix of order 𝒏 × 𝒏 associated with 𝜞𝑮[𝑿] is given 

by 𝑫𝑬𝑺(𝜞𝑮[𝑿]) = [𝒅𝒆𝒔𝒑𝒒]  whose (𝒑, 𝒒)-th entry is 

 

𝒅𝒆𝒔𝒑𝒒 = {
𝒅𝒗𝒑

𝒅𝒗𝒒 + 𝒅𝒗𝒒

𝒅𝒗𝒑 ,    𝐢𝐟 𝒑 ≠ 𝒒

𝟎,                               𝐢𝐟 𝒑 = 𝒒
. 

 

Therefore, the DES energy of 𝜞𝑮[𝑿] can be defined as 

follows: 

𝑬𝑫𝑬𝑺(𝜞𝑮[𝑿]) = ∑|𝝀𝒊|

𝒏

𝒊=𝟏

, 

where 𝝀𝟏, 𝝀𝟐,⋯ , 𝝀𝒏 are the eigenvalues (not necessarily 

distinct) of 𝑫𝑬𝑺(𝜞𝑮[𝑿]). 

 

In this section, we include some previous results 

beneficial for the next section. The following lemma is 

important for computing the characteristic polynomial of the 

commuting graph 𝜞𝑮. 

 

Lemma 2.1: (Ramane & Shinde, 2017) If 𝒂, 𝒃, 𝒄 and 𝒅 are real 

numbers, and 𝑱𝒏 is an 𝒏 × 𝒏 matrix whose all elements are 

equal to 1, then the determinant of the (𝒏𝟏 + 𝒏𝟐) × (𝒏𝟏 +

𝒏𝟐) matrix of the form 

 

|
(𝝀 + 𝒂)𝑰𝒏𝟏

− 𝒂𝑱𝒏𝟏
−𝒄𝑱𝒏𝟏×𝒏𝟐

−𝒅𝑱𝒏𝟐×𝒏𝟏
(𝝀 + 𝒃)𝑰𝒏𝟐

− 𝒃𝑱𝒏𝟐

|, 

 

can be simplified as given in the following expression 

(𝝀 + 𝒂)𝒏𝟏−𝟏(𝝀 + 𝒃)𝒏𝟐−𝟏((𝝀 − (𝒏𝟏 − 𝟏)𝒂)(𝝀 − (𝒏𝟐 −

𝟏)𝒃) − 𝒏𝟏𝒏𝟐𝒄𝒅), 

where 𝟏 ≤ 𝒏𝟏, 𝒏𝟐 ≤ 𝒏 and 𝒏𝟏 + 𝒏𝟐 = 𝒏. 

 

A graph with 𝒏 vertices, where every vertex is adjacent 

to all other vertices, is called a complete graph 𝑲𝒏 and the 

complement of 𝑲𝒏 is denoted by �̅�𝒏. The following lemma is 

the result of the spectrum of 𝑲𝒏, which is useful in 

computing 𝑬𝑫𝑬𝑺(𝜞𝑮[𝑿]). 

Lemma 2.2: (Brouwer & Haemers, 2010) If 𝑲𝒏 is the 

complete graph on 𝒏 vertices, then its adjacency matrix is 

𝑱𝒏 − 𝑰𝒏 and the spectrum of 𝑲𝒏 is {(𝒏 − 𝟏)(𝟏), (−𝟏)(𝒏−𝟏)}. 

  

3. Main Results  
 

This section presents several results on the degree 

exponent sum (DES) energy of the commuting graph on the 

dihedral group of order 𝟐𝒏. We divide 𝒏 into two cases, 

namely when 𝒏 is odd and 𝒏 is even. This is strictly for 𝒏 ≥

𝟑 since the dihedral group is abelian for 𝒏 = 𝟏 and 𝒏 = 𝟐.  

Recall that the dihedral group of order 𝟐𝒏 is 𝑫𝟐𝒏 =

〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. Let the set of rotation 

elements of 𝑫𝟐𝒏, which are not members of 𝒁(𝑫𝟐𝒏), be 

written as 𝑮𝟏 = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏}\𝒁(𝑫𝟐𝒏) and 𝑮𝟐 =

{𝒂𝒊𝒃:𝟏 ≤ 𝒊 ≤ 𝒏} be the set of reflection elements of 𝑫𝟐𝒏. 

The following is the result of the degree of each vertex in the 

commuting graph of 𝑫𝟐𝒏. 

 

Theorem 3.1: Let 𝜞𝑫𝟐𝒏
 be the commuting graph of 𝑫𝟐𝒏. 

Then, 

1. the degree of 𝒂𝒊 in 𝜞𝑫𝟐𝒏
, denoted as 𝒅𝒂𝒊, is given by 

𝒅𝒂𝒊 = {
𝒏 − 𝟐, 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝
𝒏 − 𝟑, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

, 

2. the degree of 𝒂𝒊𝒃 in 𝜞𝑫𝟐𝒏
, denoted as 𝒅𝒂𝒊𝒃, is given by 

𝒅𝒂𝒊𝒃 = {
𝟎, 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝
𝟏, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

. 

 

Proof.  

1. If 𝒏 is odd, then 𝒁(𝑫𝟐𝒏) = {𝒆}. Since 𝑪𝑫𝟐𝒏 (𝒂
𝒊) =

{ 𝒂𝒊 ∶ 𝟏 ≤ 𝒊 ≤ 𝒏}, then 𝒅𝒂𝒊 = 𝒏 − 𝟐, removing 𝒆 and 𝒂𝒊 

itself. If 𝒏 is even, then  𝒁(𝑫𝟐𝒏) = {𝒆, 𝒂
𝒏
𝟐}. Consequently, 

we have 𝒅𝒂𝒊 = 𝒏 − 𝟑, removing 𝒆, 𝒂
𝒏
𝟐, and 𝒂𝒊 itself. 

2. If 𝒏 is odd, the element 𝒂𝒊𝒃, where 𝟏 ≤ 𝒊 ≤ 𝒏, has the 

centralizer 𝑪𝑫𝟐𝒏 (𝒂
𝒊𝒃) = {𝒆, 𝒂𝒊𝒃} of size two, then there 

is no edge between any pair of vertices in 𝜞𝑮. Therefore, 

𝒅𝒂𝒊𝒃 = 𝟎. If 𝒏 is even, the centralizer of each element 𝒂𝒊𝒃 

is given by 

𝑪𝑫𝟐𝒏 (𝒂
𝒊𝒃) = {𝒆, 𝒂

𝒏
𝟐, 𝒂𝒊𝒃, 𝒂

𝒏
𝟐+𝒊𝒃}, for all 𝟏 ≤ 𝒊 ≤ 𝒏. 

Then, by excluding 𝒆 and 𝒂
𝒏
𝟐, which are the central 

elements in 𝑫𝟐𝒏, there exists only an edge between the 

vertices 𝒂𝒊𝒃 and 𝒂
𝒏
𝟐+𝒊𝒃 in 𝜞𝑮, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Hence, 

𝒅𝒂𝒊𝒃 = 𝟏.            

 

Consequently, the isomorphism of the commuting graph 

with the common type of graphs can be seen in the 

following result: 

 

Theorem 3.2: Let 𝑿 be any nonempty subset of  𝑫𝟐𝒏. 

1. If  𝑿 = 𝑮𝟏, then 

𝜞𝑫𝟐𝒏
[𝑿] ≅ 𝑲𝒎, where 𝒎 = |𝑮𝟏|. 

https://doi.org/10.22452/mjs.sp2022no1.6
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2. If  𝑿 = 𝑮𝟐, then  

𝜞𝑫𝟐𝒏
[𝑿] ≅ {

�̅�𝒏,                               𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝
𝟏 − 𝐫𝐞𝐠𝐮𝐥𝐚𝐫 𝐠𝐫𝐚𝐩𝐡, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

 

  

Proof: 

1. The centralizer of  𝒂𝒊, for 𝟏 ≤ 𝒊 ≤ 𝒏, is 𝑪𝑫𝟐𝒏 (𝒂
𝒊) =

{ 𝒂𝒊 ∶ 𝟏 ≤ 𝒊 ≤ 𝒏} of size 𝒏. This implies that every vertex 

of 𝑮𝟏 is adjacent to all vertices in the set itself. Thus, 

𝜞𝑫𝟐𝒏
[𝑮𝟏] ≅ 𝑲𝒎, where 𝒎 = |𝑮𝟏|. 

2.  It follows from Theorem 3.1 that the degree of 𝒂𝒊𝒃 in 

𝜞𝑫𝟐𝒏
[𝑮𝟐] is all zero for 𝟏 ≤ 𝒊 ≤ 𝒏, where 𝒏 is odd. Hence, 

𝜞𝑫𝟐𝒏
[𝑮𝟐] ≅ �̅�𝒏, a complement of the complete graph on 

𝒏 vertices. Now, suppose 𝒏 is even. Again, by Theorem 

3.1, the degree of 𝒂𝒊𝒃 in 𝜞𝑫𝟐𝒏
[𝑮𝟐] is all 1. This implies 

that 𝜞𝑫𝟐𝒏
[𝑮𝟐] is disconnected, with each component 

isomorphic to the 1-regular graph.  

       

We illustrate the two theorems above via the following 

examples for 𝒏 = 𝟒 and 𝒏 = 𝟓. 

 

Example 1. Let 𝜞𝑫𝟖
 be the commuting graph of 𝑫𝟖, where 

𝑫𝟖 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑, 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝒁(𝑫𝟖) = {𝒆, 𝒂𝟐}, 

𝑮𝟏 = {𝒂, 𝒂𝟑}, 𝑮𝟐 = {𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝑪𝑫𝟖 (𝒃) =

{𝒆,  𝒂𝟐, 𝒃,  𝒂𝟐𝒃} = 𝑪𝑫𝟖 (𝒂
𝟐𝒃), 𝑪𝑫𝟖 (𝒂𝒃) =

{𝒆,  𝒂𝟐, 𝒂𝒃,  𝒂𝟑𝒃} = 𝑪𝑫𝟖 (𝒂
𝟑𝒃). Using the information on the 

centralizer of each element in 𝑫𝟖, the commuting graph of 

𝑫𝟖 is as in Figure 1. 

 

From Figure 1, it is clear that the degree of each vertex 𝒂 

and 𝒂𝟑 is one. In particular, if 𝑿 = 𝑮𝟏, then 𝜞𝑫𝟖
[𝑮𝟏] is a 

complete graph on two vertices, 𝑲𝟐. However, for each 

vertex 𝒂𝒊𝒃, for 𝟏 ≤ 𝒊 ≤ 𝟒, its degree is also one. If 𝑿 = 𝑮𝟐, 

then 𝜞𝑫𝟖
[𝑮𝟐] is a disconnected 1-regular graph with two 

components isomorphic to 𝑲𝟐.  

 

Example 2. Let 𝜞𝑫𝟏𝟎
 be the commuting graph of 𝑫𝟏𝟎, where 

𝑫𝟏𝟎 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑,  𝒂𝟒 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 

𝒁(𝑫𝟏𝟎) = {𝒆}, 𝑮𝟏 = {𝒂, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒}, 𝑮𝟐 = { 𝒃,

𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 𝑪𝑫𝟏𝟎 (𝒂
𝒊𝒃) = {𝒂𝒊𝒃}, and 𝑪𝑫𝟏𝟎 (𝒂

𝒊) =

{𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝟒}. Using the information on the centralizer of 

each element in 𝑫𝟏𝟎, the commuting graph of 𝑫𝟏𝟎 is as in 

Figure 2. 

 

From Figure 2, it is clear that the degree of each vertex 

𝒂𝒊, where 𝟏 ≤ 𝒊 ≤ 𝟒 is three. In particular, if 𝑿 = 𝑮𝟏, then 

𝜞𝑫𝟏𝟎
[𝑮𝟏] is a complete graph on four vertices, 𝑲𝟒. However, 

for each vertex 𝒂𝒊𝒃, for 𝟏 ≤ 𝒊 ≤ 𝟓, its degree is zero. If 

𝑿 = 𝑮𝟐, then 𝜞𝑫𝟏𝟎
[𝑮𝟐] is a disconnected graph with five 

isolated vertices and isomorphic to the complement of a 

complete graph on five vertices, �̅�𝟓. 

 

Theorem 3.3: Let 𝑿 be any nonempty subset of 𝑫𝟐𝒏. 

1. If 𝑿 = 𝑮𝟏, then  

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑿]) = {

𝟒(𝒏 − 𝟐)𝒏−𝟏,    𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝

𝟒(𝒏 − 𝟑)𝒏−𝟐,    𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧
. 

2. If 𝑿 = 𝑮𝟐, then  

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑿]) = 𝟒(𝒏 − 𝟏). 

  

Proof. 

2. When 𝒏 is odd. From Theorem 3.2 (1),  𝜞𝑫𝟐𝒏
[𝑮𝟏] = 𝑲𝒎, 

where 𝒎 = |𝑮𝟏| = 𝒏 − 𝟏, removing 𝒆 in 𝒁(𝑫𝟐𝒏). Then, 

every vertex of 𝜞𝑫𝟐𝒏
[𝑮𝟏] has degree 𝒏 − 𝟐. 

Subsequently, we can construct an (𝒏 − 𝟏) × (𝒏 − 𝟏) 

DES matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟏], 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

[𝑮𝟏]) = [𝒅𝒆𝒔𝒑𝒒] 

whose (𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟐)𝒏−𝟐 + (𝒏 −

𝟐)𝒏−𝟐 = 𝟐(𝒏 − 𝟐)𝒏−𝟐, for 𝒑 ≠ 𝒒, and 0 otherwise: 

𝑫𝑬𝑺( 𝜞𝑫𝟐𝒏
[𝑮𝟏])

= [

𝟎 𝟐(𝒏 − 𝟐)𝒏−𝟐 ⋯ 𝟐(𝒏 − 𝟐)𝒏−𝟐

𝟐(𝒏 − 𝟐)𝒏−𝟐 𝟎 ⋯ 𝟐(𝒏 − 𝟐)𝒏−𝟐

⋮ ⋮ ⋱ ⋮
𝟐(𝒏 − 𝟐)𝒏−𝟐 𝟐(𝒏 − 𝟐)𝒏−𝟐 ⋯ 𝟎

] 

 

 = 𝟐(𝒏 − 𝟐)𝒏−𝟐 [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

 

In other words, the DES matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟏] is the product 

of 𝟐(𝒏 − 𝟐)𝒏−𝟐 and the adjacency matrix of 𝑲𝒏−𝟏. Based 

 

Figure 2. Commuting graph 𝛤𝐷10
. 

 

 

Figure 1. Commuting graph of 𝐷8. 
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on Lemma 2.2, 𝑺𝒑𝒆𝒄(𝑲𝒏−𝟏)  is given by {(𝒏 −

𝟐)(𝟏), (−𝟏)(𝒏−𝟐)}. Since the adjacency energy of 𝑲𝒏−𝟏 is 

|𝒏 − 𝟐| + (𝒏 − 𝟐)|−𝟏| = 𝟐(𝒏 − 𝟐), the DES energy of 

𝜞𝑫𝟐𝒏
[𝑮𝟏] will be 𝟐(𝒏 − 𝟐)𝒏−𝟐 ∙ 𝟐(𝒏 − 𝟐) = 𝟒(𝒏 −

𝟐)𝒏−𝟏.   

 

When 𝒏 is even. From Theorem 3.2 (1),  𝜞𝑫𝟐𝒏
[𝑮𝟏] = 𝑲𝒎, 

where 𝒎 = |𝑮𝟏| = 𝒏 − 𝟐, removing 𝒆 and 𝒂
𝒏
𝟐 in 𝒁(𝑫𝟐𝒏). 

Then, every vertex of  𝜞𝑫𝟐𝒏
[𝑮𝟏] has degree 𝒏 − 𝟑. 

Consequently, we can construct an (𝒏 − 𝟐) × (𝒏 − 𝟐) 

DES matrix of  𝜞𝑫𝟐𝒏
[𝑮𝟏], 𝑫𝑬𝑺( 𝜞𝑫𝟐𝒏

[𝑮𝟏]) = [𝒅𝒆𝒔𝒑𝒒] 

whose (𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟑)𝒏−𝟑 + (𝒏 −

𝟑)𝒏−𝟑 = 𝟐(𝒏 − 𝟑)𝒏−𝟑, for 𝒑 ≠ 𝒒, and 0 otherwise: 

 

𝑫𝑬𝑺( 𝜞𝑫𝟐𝒏
[𝑮𝟏])

= [

𝟎 𝟐(𝒏 − 𝟑)𝒏−𝟑 ⋯ 𝟐(𝒏 − 𝟑)𝒏−𝟑

𝟐(𝒏 − 𝟑)𝒏−𝟑 𝟎 ⋯ 𝟐(𝒏 − 𝟑)𝒏−𝟑

⋮ ⋮ ⋱ ⋮
𝟐(𝒏 − 𝟑)𝒏−𝟑 𝟐(𝒏 − 𝟑)𝒏−𝟑 ⋯ 𝟎

] 

 

 = 2(𝑛 − 3)𝑛−3 [

0 1 ⋯ 1
1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

] 

Thus, the DES matrix of  𝜞𝑫𝟐𝒏
[𝑮𝟏] is the product of 

𝟐(𝒏 − 𝟑)𝒏−𝟑 and the adjacency matrix of 𝑲𝒏−𝟐. Based 

on Lemma 2.2, 𝑺𝒑𝒆𝒄(𝑲𝒏−𝟐) is given by {(𝒏 −

𝟑)(𝟏), (−𝟏)(𝒏−𝟑)}. Since the adjacency energy of 𝑲𝒏−𝟐 is 

|𝒏 − 𝟑| + (𝒏 − 𝟑)|−𝟏| = 𝟐(𝒏 − 𝟑), the DES energy of 

𝜞𝑫𝟐𝒏
[𝑮𝟏] will be 𝟐(𝒏 − 𝟑)𝒏−𝟑 ∙ 𝟐(𝒏 − 𝟑) = 𝟒(𝒏 −

𝟑)𝒏−𝟐.   

 

2. When 𝒏 is odd. From Theorem 3.2 (2), 𝜞𝑫𝟐𝒏
[𝑮𝟐] = �̅�𝒏, 

where 𝒏 = |𝑮𝟐|. Then, all of the vertices have degree 

zero. Correspondingly, we can construct an 𝒏 × 𝒏 DES 

matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟐], 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

[𝑮𝟐]) = [𝒅𝒆𝒔𝒑𝒒] whose 

(𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = 𝟎𝟎 + 𝟎𝟎 = 𝟐, for 𝒑 ≠ 𝒒, and 0 

otherwise: 

𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = [

𝟎 𝟐 ⋯ 𝟐
𝟐 𝟎 ⋯ 𝟐
⋮ ⋮ ⋱ ⋮
𝟐 𝟐 ⋯ 𝟎

] 

= 𝟐 [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

 

In other words, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟐𝑨(𝑲𝒏) is the 

multiple of two adjacency matrices of 𝑲𝒏. Thus, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟐(|𝒏 − 𝟏| + (𝒏 − 𝟏)|−𝟏|) = 𝟒(𝒏 −

𝟏). 

 

When 𝒏 is even. From Theorem 3.2 (2),  𝜞𝑫𝟐𝒏
[𝑮𝟐] is a 

regular graph with degree one. Then, we can construct an 

𝒏 × 𝒏 DES matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟐], 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

[𝑮𝟐]) =

[𝒅𝒆𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = 𝟏𝟏 + 𝟏𝟏 = 𝟐, 

for 𝒑 ≠ 𝒒, and 0 otherwise: 

𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = [

𝟎 𝟐 ⋯ 𝟐
𝟐 𝟎 ⋯ 𝟐
⋮ ⋮ ⋱ ⋮
𝟐 𝟐 ⋯ 𝟎

] = 𝟐 [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

It implies that 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟐𝑨(𝑲𝒏). Thus, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟒(𝒏 − 𝟏). 

 

The DES energy of the commuting graph 𝜞𝑫𝟐𝒏
[𝑿] for 𝑿 =

𝑮𝟏, 𝑮𝟐 are given by the following examples, for 𝒏 = 𝟒 and 

𝒏 = 𝟓. 

 

Example 3. In Figure 1, we have shown the commuting graph 

of 𝑫𝟖. When 𝑿 = 𝑮𝟏, since we only have two vertices 𝒂 and 

𝒂𝟑, we have a 𝟐 × 𝟐 DES matrix of 𝜞𝑫𝟖
[𝑮𝟏] with the non-

diagonal entries are 𝟏𝟏 + 𝟏𝟏 = 𝟐, and the diagonal entries 

are zero. We then obtain  

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏]) = [

𝟎 𝟐
𝟐 𝟎

]. 

 

Furthermore, the characteristic polynomial of 

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏]) is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟖

[𝑮𝟏])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟐 −

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏])) = 𝒅𝒆𝒕 [

𝝀 −𝟐
−𝟐 𝝀

] = 𝝀𝟐 − 𝟒. It implies that 

the eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏]) are 𝝀 = 𝟐 and 𝝀 = −2. 

Therefore, the DES energy of 𝜞𝑫𝟖
[𝑮𝟏] is 𝑬𝑫𝑬𝑺(𝜞𝑫𝟖

[𝑮𝟏]) =

|𝟐| + |−𝟐| = 𝟒 = 𝟒(𝟒 − 𝟑)𝟒−𝟐. 

 

For the case 𝑿 = 𝑮𝟐, we know that the set of vertices is 

{ 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}. Here, we have a 𝟒 × 𝟒 DES matrix of 

𝜞𝑫𝟖
[𝑮𝟐] with the non-diagonal entries are 𝟏𝟏 + 𝟏𝟏 = 𝟐, 

while the diagonal entries are zero. Then, we get 

 

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) = [

𝟎 𝟐 𝟐 𝟐
𝟐 𝟎 𝟐 𝟐
𝟐 𝟐 𝟎 𝟐
𝟐 𝟐 𝟐 𝟎

]. 

 

Additionally, the characteristic polynomial of 

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟖

[𝑮𝟐])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟒 −

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐])) = (𝝀 + 𝟐)𝟑(𝝀 − 𝟔). It implies that the 

eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) are 𝝀 = −𝟐 with multiplicity 

3 and a single 𝝀 = 𝟔. Therefore, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) = 𝟑|−𝟐| +

|𝟔| = 𝟏𝟐 = 𝟒(𝟒 − 𝟏). 

 

Example 4. In Figure 2, we have presented the commuting 

graph of 𝑫𝟏𝟎. For 𝑿 = 𝑮𝟏, we have a 𝟒 × 𝟒 DES matrix of 

𝜞𝑫𝟏𝟎
[𝑮𝟏] with the non-diagonal entries are 𝟑𝟑 + 𝟑𝟑 = 𝟓𝟒, 

while the diagonal entries are zero. We then obtain 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏] ) = [

𝟎 𝟓𝟒 𝟓𝟒 𝟓𝟒
𝟓𝟒 𝟎 𝟓𝟒 𝟓𝟒
𝟓𝟒 𝟓𝟒 𝟎 𝟓𝟒
𝟓𝟒 𝟓𝟒 𝟓𝟒 𝟎

] 
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Furthermore, the characteristic polynomial of 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏] ) is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

[𝑮𝟏] )(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟒 −

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏])) = (𝝀 + 𝟓𝟒)𝟑(𝝀 − 𝟏𝟔𝟐). It implies that the 

eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏]) are 𝝀 = −𝟓𝟒 with 

multiplicity 3 and a single 𝝀 = 𝟏𝟔𝟐. Therefore, the DES 

energy of 𝜞𝑫𝟏𝟎
[𝑮𝟏] is 𝑬𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

[𝑮𝟏]) = 𝟑|−𝟓𝟒| + |𝟏𝟔𝟐| =

𝟑𝟐𝟒 = 𝟒(𝟓 − 𝟐)𝟓−𝟏. 

Additionally, for 𝑿 = 𝑮𝟐, we have a 𝟓 × 𝟓 DES matrix of 

𝜞𝑫𝟏𝟎
[𝑮𝟐]  with the non-diagonal entries are 𝟎𝟎 + 𝟎𝟎 = 𝟐, 

and the diagonal entries are zero. We then obtain 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐] ) =

[
 
 
 
 
𝟎 𝟐 𝟐 𝟐 𝟐
𝟐 𝟎 𝟐 𝟐 𝟐
𝟐 𝟐 𝟎 𝟐 𝟐
𝟐 𝟐 𝟐 𝟎 𝟐
𝟐 𝟐 𝟐 𝟐 𝟎]

 
 
 
 

 

Hence, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐]) 

is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟓 − 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

[𝑮𝟐])) = (𝝀 +

𝟐)𝟒(𝝀 − 𝟖). It implies that the eigenvalues of 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐]) are 𝝀 = −𝟐 with multiplicity 4 and 𝝀 = 𝟖 

with multiplicity 1. Therefore, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐]) = 𝟒|−𝟐| +

|𝟖| = 𝟏𝟔 = 𝟒(𝟓 − 𝟏). 

 

Theorem 3.4: Let 𝜞𝑫𝟐𝒏
 be the commuting graph of 𝑫𝟐𝒏. 

Then, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) is 

1. 𝑃𝐷𝐸𝑆(𝛤𝐷2𝑛)(𝜆) = (𝜆 + 2(𝑛 − 2)(𝑛−2))
𝑛−2

(𝜆 + 2)𝑛−1(𝜆2 −

(2(𝑛 − 1) + 2(𝑛 − 2)𝑛−1)𝜆 + 4(𝑛 − 2)𝑛−1(𝑛 − 1) −
𝑛(𝑛 − 1)), for 𝑛 is odd, while 

2. 𝑃𝐷𝐸𝑆(𝛤𝐷2𝑛)(𝜆) = (𝜆 + 2(𝑛 − 3)(𝑛−3))
𝑛−3

(𝜆 + 2)𝑛−1(𝜆2 −

(2(𝑛 − 1) + 2(𝑛 − 3)𝑛−2)𝜆 + 4(𝑛 − 1)(𝑛 − 3)𝑛−2 −
𝑛(𝑛 − 2)3), for 𝑛 is even. 

 

Proof. 

1. When 𝒏 is odd, from Theorem 3.1, we have 𝒅𝒂𝒊 = 𝒏 − 𝟐 

and 𝒅𝒂𝒊𝒃 = 𝟎, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, using the fact that 

𝒁(𝑫𝟐𝒏) = {𝒆}, we have 𝟐𝒏 − 𝟏 vertices in 𝜞𝑫𝟐𝒏
. The set 

of vertices consists of 𝒏 − 𝟏 vertices of the form 𝒂𝒊, for 

𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, and 𝒏 vertices of the form 𝒂𝒊𝒃, for 𝟏 ≤

𝒊 ≤ 𝒏. Consequently, the DES matrix for 𝜞𝑫𝟐𝒏
 is a (𝟐𝒏 −

𝟏) × (𝟐𝒏 − 𝟏) matrix, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = [𝒅𝒆𝒔𝒑𝒒] whose 

entries are: 

(i)   𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟐)𝒏−𝟐 + (𝒏 − 𝟐)𝒏−𝟐 = 𝟐(𝒏 − 𝟐)𝒏−𝟐, 

for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 − 𝟏, 

(ii)  𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟐)𝟎 + (𝟎)𝒏−𝟐 = 𝟏, for 𝟏 ≤ 𝒑 ≤ 𝒏 − 𝟏 

and 𝒏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(iii) 𝒅𝒆𝒔𝒑𝒒 = (𝟎)𝒏−𝟐 + (𝒏 − 𝟐)𝟎 = 𝟏, for 𝒏 ≤ 𝒑 ≤ 𝟐𝒏 − 𝟏 

and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟏, 

(iv) 𝒅𝒆𝒔𝒑𝒒 = (𝟎)𝟎 + (𝟎)𝟎 = 𝟐, for 𝒑 ≠ 𝒒, 𝒏 ≤ 𝒑 ≤ 𝟐𝒏 −

𝟏 and 𝒏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(v)  𝒅𝒆𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) as follows: 

𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
)

=

[
 
 
 
 
 
 
 

𝟎 𝟐(𝒏 − 𝟐)(𝒏−𝟐) ⋯ 𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟏 𝟏 ⋯ 𝟏

𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟎 ⋯ 𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟏 𝟏 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟐(𝒏 − 𝟐)(𝒏−𝟐) ⋯ 𝟎 𝟏 𝟏 ⋯ 𝟏
𝟏 𝟏 ⋯ 𝟏 𝟎 𝟐 ⋯ 𝟐
𝟏 𝟏 ⋯ 𝟏 𝟐 𝟎 ⋯ 𝟐
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟏 𝟐 𝟐 ⋯ 𝟎]

 
 
 
 
 
 
 

 

 

= [
2(𝑛 − 2)(𝑛−2)(𝐽𝑛−1 − 𝐼𝑛−1) 𝐽(𝑛−1)×𝑛

𝐽𝑛×(𝑛−1) 2(𝐽𝑛 − 𝐼𝑛)
] 

= [
𝑇1 𝑇2

𝑇3 𝑇4
]. 

 

In the current case, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) is divided into four 

blocks, where the first block is 𝑻𝟏, which is a block of 

(𝒏 − 𝟏) × (𝒏 − 𝟏) matrix with zero diagonal and all non-

diagonal entries as 𝟐(𝒏 − 𝟐)(𝒏−𝟐). In the next two blocks, 

we have 𝑻𝟐 and 𝑻𝟑 matrices, which are of the size 

(𝒏 − 𝟏) × 𝒏 and 𝒏 × (𝒏 − 𝟏), respectively, whose all 

entries are equal to one. The last block is 𝑻𝟒, which is an 

𝒏 × 𝒏 matrix with zero diagonal, and all non-diagonal 

entries are equal to two. Then, we obtain the 

characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) from the 

following determinant 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
)(𝝀) = |𝝀𝑰𝟐𝒏−𝟏 − 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

)| 

= |
(𝝀 + 𝟐(𝒏 − 𝟐)(𝒏−𝟐))𝑰𝒏−𝟏 − 𝟐(𝒏 − 𝟐)(𝒏−𝟐)𝑱𝒏−𝟏 −𝑱(𝒏−𝟏)×𝒏

− 𝑱𝒏×(𝒏−𝟏) (𝝀 + 𝟐)𝑰𝒏 − 𝟐𝑱𝒏

| 

. 

By using Lemma 2.1, with 𝒂 = 𝟐(𝒏 − 𝟐)(𝒏−𝟐), 𝒃 = 𝟐, 𝒄 =

𝟏, 𝒅 = 𝟏, 𝒏𝟏 = 𝒏 − 𝟏 and 𝒏𝟐 = 𝒏, we get the required 

result. 

 

2. When 𝒏 is even, using Theorem 3.1, we know that 𝒅𝒂𝒊 =

𝒏 − 𝟑 and 𝒅𝒂𝒊𝒃 = 𝟏, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, using the 

fact that 𝒁(𝑫𝟐𝒏) = {𝒆, 𝒂
𝒏
𝟐}, we have 𝟐𝒏 − 𝟐 vertices in 

𝜞𝑫𝟐𝒏
. The set of vertices consists of 𝒏 − 𝟐 vertices of the 

form 𝒂𝒊, with 𝒊 ≠ 𝒏,
𝒏

𝟐
 and 𝒏 vertices of the form 𝒂𝒊𝒃, for 

𝟏 ≤ 𝒊 ≤ 𝒏. Correspondingly, the DES matrix for 𝜞𝑫𝟐𝒏
 is a 

(𝟐𝒏 − 𝟐) × (𝟐𝒏 − 𝟐) matrix, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = [𝒅𝒆𝒔𝒑𝒒] 

whose entries are: 

(i)   𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟑)𝒏−𝟑 + (𝒏 − 𝟑)𝒏−𝟑 = 𝟐(𝒏 − 𝟑)𝒏−𝟑, 

for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 − 𝟐, 

(ii)  𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟑)𝟏 + (𝟏)𝒏−𝟑 = 𝒏 − 𝟐, for 𝟏 ≤ 𝒑 ≤

𝒏 − 𝟐 and 𝒏 − 𝟏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(iii) 𝒅𝒆𝒔𝒑𝒒 = (𝟏)𝒏−𝟑 + (𝒏 − 𝟑)𝟏 = 𝒏 − 𝟐, for 𝒏 − 𝟏 ≤

𝒑 ≤ 𝟐𝒏 − 𝟐 and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟐, 

(iv) 𝒅𝒆𝒔𝒑𝒒 = (𝟏)𝟏 + (𝟏)𝟏 = 𝟐, for 𝒑 ≠ 𝒒, 𝒏 − 𝟏 ≤ 𝒑 ≤

𝟐𝒏 − 𝟐 and 𝒏 − 𝟏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(v)  𝒅𝒆𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) as the following: 
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[
 
 
 
 
 
 
 

𝟎 𝟐(𝒏 − 𝟑)(𝒏−𝟑) ⋯ 𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐

𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝟎 ⋯ 𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝟐(𝒏 − 𝟑)(𝒏−𝟑) ⋯ 𝟎 𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐
𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐 𝟎 𝟐 ⋯ 𝟐
𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐 𝟐 𝟎 ⋯ 𝟐

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐 𝟐 𝟐 ⋯ 𝟎 ]

 
 
 
 
 
 
 

 

= [
𝟐(𝒏 − 𝟑)(𝒏−𝟑)(𝑱𝒏−𝟐 − 𝑰𝒏−𝟐) (𝒏 − 𝟐)𝑱(𝒏−𝟐)×𝒏

(𝒏 − 𝟐)𝑱𝒏×(𝒏−𝟐) 𝟐(𝑱𝒏 − 𝑰𝒏)
] 

= [
𝑼𝟏 𝑼𝟐

𝑼𝟑 𝑼𝟒
].  

 

In the current case, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) is divided into four 

blocks, where the first block we have 𝑼𝟏 which is a block 

of (𝒏 − 𝟐) × (𝒏 − 𝟐) matrix with zero diagonal and all 

non-diagonal entries as 𝟐(𝒏 − 𝟑)(𝒏−𝟑). The next two 

blocks are 𝑼𝟐 and 𝑼𝟑, which are of the size (𝒏 − 𝟐) × 𝒏  

and 𝒏 × (𝒏 − 𝟐), respectively, whose all entries are 

equal to 𝒏 − 𝟐. The last block is 𝑼𝟒, which is an 𝒏 × 𝒏 

matrix with zero diagonal, and all non-diagonal entries 

are equal to two. Then, we obtain the characteristic 

polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) from the following 

determinant 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
)(𝝀) = |𝝀𝑰𝟐𝒏−𝟐 − 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

)| 

= |
(𝝀 + 𝟐(𝒏 − 𝟑)(𝒏−𝟑))𝑰𝒏−𝟐 − 𝟐(𝒏 − 𝟑)(𝒏−𝟑)𝑱𝒏−𝟐 −(𝒏 − 𝟐)𝑱(𝒏−𝟐)×𝒏

−(𝒏 − 𝟐)𝑱𝒏×(𝒏−𝟐) (𝝀 + 𝟐)𝑰𝒏 − 𝟐𝑱𝒏

|. 

By using Lemma 2.1, with 𝒂 = 𝟐(𝒏 − 𝟑)(𝒏−𝟑), 𝒃 = 𝟐, 𝒄 =

𝒏 − 𝟐, 𝒅 = 𝒏 − 𝟐, 𝒏𝟏 = 𝒏 − 𝟐 and 𝒏𝟐 = 𝒏, we obtain 

the result.     

         

The illustration of the above theorem is given by the 

following examples for 𝒏 = 𝟒 and 𝒏 = 𝟓. 

 

Example 5. In Example 1, we obtained the commuting graph 

of 𝑫𝟖. Since the degree of each vertex is one, then we will 

have a 𝟔 × 𝟔 DES matrix of 𝜞𝑫𝟖
 as follows: 

𝑫𝑬𝑺(𝜞𝑫𝟖
) =

[
 
 
 
 
 
𝟎 𝟐 𝟐 𝟐 𝟐 𝟐
𝟐 𝟎 𝟐 𝟐 𝟐 𝟐
𝟐 𝟐 𝟎 𝟐 𝟐 𝟐
𝟐 𝟐 𝟐 𝟎 𝟐 𝟐
𝟐 𝟐 𝟐 𝟐 𝟎 𝟐
𝟐 𝟐 𝟐 𝟐 𝟐 𝟎]

 
 
 
 
 

. 

Hence, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟖
)  is 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟖
)(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟔 − 𝑫𝑬𝑺(𝜞𝑫𝟖

)) = (𝝀 + 𝟐)(𝝀 +

𝟐)𝟑(𝝀𝟐 − 𝟖𝝀 − 𝟐𝟎) = (𝝀 + 𝟐)𝟓(𝝀 − 𝟏𝟎). Using MapleTM, 

we confirmed that the eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟖
) are 𝝀 = −𝟐 

with multiplicity 5 and a single 𝝀 =10. Therefore, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟖
) = 𝟓|−𝟐| + |𝟏𝟎| = 𝟐𝟎. 

 

Example 6. In Example 2, we have presented the commuting 

graph of 𝑫𝟏𝟎. Then, we have a 𝟗 × 𝟗 DES matrix of 𝜞𝑫𝟏𝟎
 as 

follows:  

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) =

[
 
 
 
 
 
 
 
 
𝟎 𝟓𝟒 𝟓𝟒 𝟓𝟒 𝟏 𝟏 𝟏 𝟏 𝟏
𝟓𝟒 𝟎 𝟓𝟒 𝟓𝟒 𝟏 𝟏 𝟏 𝟏 𝟏
𝟓𝟒 𝟓𝟒 𝟎 𝟓𝟒 𝟏 𝟏 𝟏 𝟏 𝟏
𝟓𝟒 𝟓𝟒 𝟓𝟒 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏
𝟏 𝟏 𝟏 𝟏 𝟎 𝟐 𝟐 𝟐 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟎 𝟐 𝟐 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟐 𝟎 𝟐 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟐 𝟐 𝟎 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟐 𝟐 𝟐 𝟎]

 
 
 
 
 
 
 
 

. 

 

Hence, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) is 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
)(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟗 − 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

)) = (𝝀 +

𝟓𝟒)𝟑 (𝝀 + 𝟐)𝟒(𝝀𝟐 − 𝟏𝟕𝟎𝝀 + 𝟏𝟐𝟕𝟔). Using MapleTM, we 

confirmed that the eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) are 𝝀 = −𝟓𝟒 

with multiplicity 3, 𝝀 = −𝟐 with multiplicity 4 and 𝝀 = 𝟖𝟓 ±

𝟑√𝟔𝟔𝟏. Thus, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) = 𝟑|−𝟓𝟒| + 𝟒|−𝟐| + |𝟖𝟓 +

𝟑√𝟔𝟔𝟏| + |𝟖𝟓 − 𝟑√𝟔𝟔𝟏| = 𝟑𝟒𝟎. 

 

Theorem 3.5: Let 𝜞𝑫𝟐𝒏
 be the commuting graph of 𝑫𝟐𝒏. Then 

1. for the odd 𝒏,  

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟒(𝒏 − 𝟐)𝒏−𝟏 + 𝟒(𝒏 − 𝟏), 

2. and for the even 𝒏, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = {

𝟐𝟎,                                           𝐢𝐟 𝒏 = 𝟒 

𝟒(𝒏 − 𝟑)𝒏−𝟐 + 𝟒(𝒏 − 𝟏), 𝐢𝐟 𝒏 > 𝟒
. 

 

Proof. 

1. By Theorem 3.4 (1) for the odd 𝒏, the characteristic 

polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) has four eigenvalues, with the 

first eigenvalue is 𝝀𝟏 = −𝟐(𝒏 − 𝟐)𝒏−𝟐 of multiplicity 𝒏 −

𝟐, and the second eigenvalue is 𝝀𝟐 = −𝟐 of multiplicity 

𝒏 − 𝟏. The quadratic formula gives the other two 

eigenvalues, which are 𝝀𝟑, 𝝀𝟒 = (𝒏 − 𝟐)𝒏−𝟏 + (𝒏 − 𝟏) ±

√((𝒏 − 𝟐)𝒏−𝟏 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟏), and both of 

them are positive real numbers. Hence, the DES energy 

for 𝜞𝑫𝟐𝒏
 is 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = (𝒏 − 𝟐)|−𝟐(𝒏 − 𝟐)𝒏−𝟐| + (𝒏 − 𝟏)|−𝟐| 

+|(𝒏 − 𝟐)𝒏−𝟏 + (𝒏 − 𝟏)

± √((𝒏 − 𝟐)𝒏−𝟏 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟏)  | 

= 𝟐(𝒏 − 𝟐)𝒏−𝟏 + 𝟐(𝒏 − 𝟏) + 𝟐(𝒏 − 𝟐)𝒏−𝟏 + 𝟐(𝒏 − 𝟏) 

= 𝟒(𝒏 − 𝟐)𝒏−𝟏 + 𝟒(𝒏 − 𝟏). 

 

2. By Theorem 3.4 (2) for the even 𝒏, the characteristic 

polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) has four eigenvalues, with the 

first eigenvalue is 𝝀𝟏 = −𝟐(𝒏 − 𝟑)𝒏−𝟑 of multiplicity 𝒏 −

𝟑, and the second eigenvalue is 𝝀𝟐 = −𝟐 of multiplicity 

𝒏 − 𝟏. The quadratic formula gives the other two 

eigenvalues, which leads to two cases. First, when 𝒏 = 𝟒, 

they are a positive real number, and the other is negative. 

It is evident from Example 5 that 𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟐𝟎. 

Meanwhile, for 𝒏 > 𝟒, the last two eigenvalues are 

positive real numbers given by 𝝀𝟑, 𝝀𝟒 = (𝒏 − 𝟑)𝒏−𝟐 +
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(𝒏 − 𝟏) ± √((𝒏 − 𝟑)𝒏−𝟐 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟐)𝟑. 

Thus, the DES energy for 𝜞𝑫𝟐𝒏
 is 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = (𝒏 − 𝟑)|−𝟐(𝒏 − 𝟑)𝒏−𝟑| + (𝒏 − 𝟏)|−𝟐| 

+|(𝒏 − 𝟑)𝒏−𝟐 + (𝒏 − 𝟏)

± √((𝒏 − 𝟑)𝒏−𝟐 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟐)𝟑| 

= 𝟒(𝒏 − 𝟑)𝒏−𝟐 + 𝟒(𝒏 − 𝟏).     

   

4. Conclusion 
 

This paper has given the general formula of degree 

exponent sum (DES) energy of commuting graphs for 

dihedral groups. In particular, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟒(𝒏 − 𝟐)𝒏−𝟏 +

𝟒(𝒏 − 𝟏) when 𝒏 is odd. On the other hand, there are two 

cases for 𝒏 is even, namely 𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟐𝟎 if 𝒏 = 𝟒 and 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟒(𝒏 − 𝟑)𝒏−𝟐 + 𝟒(𝒏 − 𝟏) if 𝒏 > 𝟒. This 

happens as a result of the difference between the quadratic 

polynomial roots, which is a part of the corresponding 

characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
). 
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