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Abstract: The concept of public-key cryptography introduced the notion of a digital signature scheme. In the era of online and digital 

communications, a signature scheme that works perfectly to achieve the goals of cryptography- confidentiality, authentication, data 

integrity, and non-repudiation, is urgently needed. However, every cryptosystem, including a digital signature scheme requires a well-

defined difficult mathematical problem as its fundamental security strength, as demonstrated by the Diffie-Hellman key exchange with 

its discrete logarithm problem (DLP). Another problem called BFHP used by the 𝐴𝐴𝛽-encryption scheme, has also withstood any 

destructive cryptanalysis since the scheme was introduced in 2013. Later, a digital signature scheme was introduced that combines both 

BFHP and DLP as difficult mathematical problems. Mathematical cryptanalysis was also performed against this scheme to test its security 

strength. This paper presents new cryptanalysis of the signing scheme. While the previous cryptanalysis focused only on BFHP, the 

obtained new results showed some improvement by scrutinizing the other difficult mathematical problem, DLP. In addition, several 

potential attacks on the future implementation by introducing side-channel and man-in-the-middle attacks against the scheme also will 

be discussed in this work. The countermeasures for each attack to enable the best-practice implementation of the scheme are also 

presented. 
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1. Introduction 
 

Most digital applications of today’s use required a digital 

signature scheme embedded in their core functions. The 

scheme serves the cryptographic goals of verifying the 

authenticity, integrity, and non-repudiation of a digital 

document transmitted over an insecure Internet channel. 

Traditional signing schemes were already introduced by 

ElGamal (1985), Rivest et al.  (1978), and Schnorr (1991). 

Today, various protocols of signing schemes have been 

derived from these schemes and refined for niche purposes, 

including threshold signature (Gennaro et al., 2018; Ergezer 

et al., 2020), group signature (Islamidina et al., 2019; Nick et 

al., 2020), and blind signature (Alam et al., 2016; Fuchsbauer 

et al., 2020;) schemes. Some of the variants have become the 

backbone of the latest digital technologies, including 

blockchain systems (Stathakopoulou & Cachin, 2017; Guo & 

Lan, 2020). In addition, a standard digital signature scheme 

that can be used by public users has been introduced, 

namely, Public-Key Cryptography Standard (PKCS) #1 and 

Elliptic Curve Digital Signature Algorithm (ECDSA), which 

have been documented by the Internet Engineering Task 

Force (IETF) (Moriarty et al., 2016; Pornin, 2013).  

All of the mentioned schemes use either the Integer 

Factorization Problem (IFP) or the Discrete Logarithm 

Problem (DLP), which are considered by many to be one-way 

functions in the mathematical domain (Hoffstein et al., 

2008). These functions ensure the previously mentioned 

cryptographic goals are achieved by satisfying the properties 

of a mathematical one-way function. The functions are also 

resistant to all feasible algorithms that can work with current 

computing power. The best algorithm for solving IFP is the 

quadratic sieve algorithm described by Pomerance (1984), 

while several algorithms, namely the index computation, 

Pollard's rho, and number field sieve algorithms explained by 

Paar and Pelzl (2009), are among the best-known algorithms 

for solving it. However, all of these algorithms run in 

subexponential time at best, which prevents any active 

attack in real cryptographic implementations.  
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The approach of combining two difficult problems to 

increase the security of a cryptosystem is not new. Smith and 

Lennon (1993) introduced the LUC cryptosystem based on 

DLP and IFP. However, the attacks conducted against this 

cryptosystem (Jin et al., 2013; Wong et al., 2015; Sarbini et 

al., 2018;) have shown that it should be carefully examined 

before using any implementation. In this paper, the scheme 

is discussed by combining the DLP with another difficult 

mathematical problem called the Bivariate Function Hard 

Problem (BFHP). The problem was introduced by Ariffin et al. 

(2013) and has been used previously to develop a new 

encryption scheme called the 𝑨𝑨𝜷-algorithm. The scheme 

relies solely on BFHP as its security strength and is suitable to 

be applied on an embedded system device due to its high 

encryption speed compared to conventional encryption 

schemes (Adnan et al., 2016). Its decryption algorithm has 

also withstood several side-channel attacks, which can be 

remedied by minimal additional operation (Abd Ghafar & 

Ariffin, 2014; Abd Ghafar & Ariffin, 2016). 

 

1.1. Contribution of This Paper 

 

This paper presents a new signing scheme that combines 

BFHP and DLP as a key security strength. The scheme, named 

BFHP-DLP signing scheme, was introduced by Abd Ghafar & 

Ariffin (2019) and is comparable in its computational 

operations to existing signing schemes such as RSA, ElGamal, 

and Schnorr. In contrast to the original paper, the scheme is 

presented based on its modules. This form of presentation is 

better suited to control access to the modules given to the 

intended entity. Another important contribution of this work 

is that three new improved attacks on the BFHP-DLP signing 

method being performed. The improved cryptanalysis is 

based on the recent results on solving DLP and techniques of 

side-channel attack and man-in-the-middle attack, which can 

be used to retrieve the values of the private keys of the 

scheme.  

The first attack refers to the recent attempt by Boudot et 

al. (2020), who successfully solved DLP using the Number 

Field Sieve algorithm with a 795-bits prime. Hence, the 

obtained result proved how this recent result can affect the 

size criteria used in the key generation algorithm of the 

BFHP-DLP scheme. The second attack assumes that an 

adversary can perform a side-channel attack on the device 

that carries out the signing scheme. In the third attack, the 

authors showed that the adversary can successfully break 

the scheme using a man-in-the-middle attack method. 

 

1.2. Outline of the Paper 

 

The outline of methods used in this paper is as follows; 

number field sieve algorithm, side-channel attack, and man-

in-the-middle attack are discussed in Section 2. Then, Section 

3 describes the reintroduce BFHP-DLP signing scheme. The 

three attacks, which are the primary basis of this paper, will 

be presented in Section 4. Finally, the conclusion will be 

discussed in Section 5. 

 

2. Preliminaries 
 

This section describes the methods used in improved 

cryptanalysis. Although all methods are little known in the 

literature, they are widely used in attacks on public-key 

cryptosystems. 

  

2.1 Number Field Sieve (NFS) 

 

Before describing the number field sieve method, the 

problem of the discrete logarithm that the method attempts 

to solve is first defined. The problem is also used in the BFHP-

DLP signing scheme. 

Definition 1 (Discrete logarithm problem). Let 𝒑 be a 

prime. Suppose 𝔽𝒑 is a prime-order finite field. Given 𝒈, 𝒉 ∈

𝔽𝒑
∗ , discrete logarithm problem is a problem to find 𝒙 such 

that 𝒈𝒙 ≡ 𝒉 (mod 𝒑). 

The goal of the NFS in the finite field of DLP is to compute 

a non-trivial homomorphism from 𝑮 to ℤ 𝓵ℤ⁄  such that 𝑮 is a 

subgroup of prime order 𝓵 within 𝔽𝒑
∗ . The strategy to achieve 

this goal is to find two irreducible polynomials 𝒇𝟎 of degree 

𝒖 and 𝒇𝟏 of degree 𝒗 in ℤ𝒙. These polynomials should have a 

common root 𝝁 modulo 𝒑. Let ℚ(𝒊) be the number field 

defined by 𝒇 where 𝒊 ∈ ℂ is a root of 𝒇𝟏 such that 𝒇𝟏 is an 

irreducible polynomial, then the most challenging task in NFS 

is to find a pair of integers (𝜶, 𝜷) such that  

 

𝜸 = 𝜶 − 𝜷𝝁 and 𝜹 = 𝜶 − 𝜷𝒊 

 

are both decomposable into small factors, i.e. smooth 

numbers. Many papers in the literature are devoted to 

finding the relation between 𝜶 and 𝜷, since this step takes 

up most of the computations (computational power and 

computational storage. In this case, the result from this 

method is applied to fit into our key generation algorithm; as 

described in detail by Boudot et al. (2019) 

  

2.2 Side-channel attack 

 

This attack focuses on the implementation of 

cryptosystems in electronic devices. It relies on observable 

outputs such as computing time, power consumption, 

acoustic form and many more during cryptographic 

processes. The adversary can collect these outputs because 

the computation takes place in a 'black box' system, i.e. the 

adversary can only examine the functionality of the devices 

but has no access to the private functioning. The attack 

introduced by Kocher (1996) typically examines the private 

computations of the signing scheme. In this paper, the 

signing algorithm of the BFHP-DLP scheme is specifically 

become the main focus.  
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2.2.1 Fault Analysis 

 

By the definition of a side-channel attack, an attacker 

cannot determine the internal states of the attacked 

cryptographic devices. However, by introducing unexpected 

environmental conditions that can lead to data corruption 

into a specific part of the processor executed by the devices, 

the attacker can cause errors in the targeted cryptographic 

computations. By neglecting the error, the attacker can then 

isolate the instructions executed by the devices and 

eventually determine the internal workings of computations.  

In a seminal work by Bao et al. (1997), 𝒑 is the public key 

of the ElGamal signature scheme and M is the message to be 

signed. This showed that an attacker can obtain the actual 

signature by flipping one bit of the private signing key, 𝒅 at 

the 𝒊-th bit position, thus forming an erroneous 𝒅′, then  

 

𝑺 ≡ 𝑴𝒅(mod 𝒑) 

 

and the faulty signature,  

 

𝑺′ ≡ 𝑴𝒅′
(mod 𝒑). 

 

Both signatures then can be used to determine the bit of 𝒅 

at 𝒕𝒉𝒆 𝒊-th position by computing the  function 

 

𝑺′

𝑺
 ≡  𝑴𝒅′−𝒅  ≡  {

𝑴𝟐𝒊 (mod 𝒑) if the 𝒊 − th bit of 𝒅 = 𝟎 
𝟏

𝑴𝟐𝒊 
(mod 𝒑) if the 𝒊 − th bit of 𝒅 = 𝟏

. 

 

To extend the attack and determine the entire bits of the 

private key, each bit with 𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏 should be 

examined and a subexponential algorithm is needed. The 

attack shows the significance of thorough cryptanalysis to 

ensure that the signature cannot be compromised to obtain 

information about the private keys.   

 

2.3 Man-in-the-middle attack 

 

If the communication between two units is secretly 

intercepted by an adversary, the immediate consequence 

depends on whether the adversary is actively involved in the 

communication. For example, if the adversary surreptitiously 

forwards and modifies the communication, there is a man-

in-the-middle attack on the communication. 

A suitable authentication mechanism is required to 

prevent this attack. The standard mechanism currently used 

is the exchange of digital certificates issued and verified by a 

trusted Certificate Authority (CA). However, this CA can also 

be a target of a man-in-the-middle attack. Therefore, CA 

must be subjected to proper evaluation and security 

verification at regular intervals. 

 

In this paper, a man-in-the-middle attack is constructed 

against the BFHP-DLP signature procedure. The existence of 

such an attack shows that it is necessary to first develop a 

suitable cryptographic protocol before this system can be 

used in an application. 

 

3. BFHP-DLP Signing Scheme 
 

In this study, our scheme is rewritten and compared to 

the original paper by (Abd Ghafar & Ariffin, 2019) in our to 

separate our schemes into their purported modules. This 

form is more suitable for cryptanalysis of our scheme, 

especially when the modules may have different access 

controls even though they are included in the same 

algorithm. It also reflects the actual use of a cryptographic 

scheme in a real scenario.  

The initialisation and key generation algorithms of the 

scheme, as shown in Figure 1. 

 

𝓘: Initialization algorithm → (𝒑, 𝒈) 

Select 𝒑 randomly from ℤ𝟐𝒎    

           where 𝒎 is a large integer 

Select 𝒈 from ℤ𝒑
∗  where 𝒈 is a primitive root of group ℤ𝒑

∗  

 

𝓚: Key Generation algorithm → (𝒂, 𝒃) and (𝑨, 𝑩) 

Private key 

           Given 𝒏 > 𝒎. 

           select 𝒂 randomly from ℤ𝟐𝒏  

           select 𝒃 randomly from ℤ𝟐𝒏  

Public key 

           compute 𝑨 ≡ 𝒈𝒂(mod 𝒑) 

           compute 𝑩 ≡ 𝒈𝒃(mod 𝒑)            

 

Figure 1. Initialization and key generation algorithms of 

BFHP-DLP signing scheme 

 

As in Figure 1, the algorithms are typically computed by 

isolated devices controlled by a Trusted Third Party (TTP). An 

example of such a TTP practice is CA (as referred to in Section 

2.3), which is validated by government agencies. This 

approach ensures that only the authorised body can monitor 

the process. After the keys are generated, the private keys 

are securely stored in a tampered-resistant device, such as 

chips on a smartcard or a secure token carried by the 

authenticated owners.   

Next, the algorithms for signing and verification of the 

scheme are shown in Figure 2. 

In the signature algorithm, a hash function 𝑯 creates a 

digital fingerprint of 𝑴‖𝒓, which is the concatenation of the 

original message, 𝑴 with the private parameter, 𝒓. The 

standard hash function used today is SHA-256 and its 

variants. 
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𝓢: Signature algorithm of 𝑴 → (𝑴, 𝝈, 𝒆) 

Public ephemeral key 

           select 𝒙 randomly from ℤ𝟐𝒎  

           select 𝒚 randomly from ℤ𝟐𝒎  

Private session key 

           compute 𝒄 = 𝒂𝒙 + 𝒃𝒚 

           select 𝒌 randomly from ℤ𝟐𝒏  such that 

           𝒄 − 𝒌 > 𝟐𝒎 and 𝒏 > 𝒎. 

Private computation of signing 𝑴 

           compute 𝒔 = 𝒄 − 𝒌 

           compute 𝒓 ≡ 𝒈𝒌(mod 𝒑) 

           𝒆 = 𝑯(𝑴‖𝒓) where 𝑯 is a hash function 

Output public signature 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆)  

 

𝓥: Verification algorithm of (𝑴, 𝝈)  

Verification key 

          compute 𝒓′ ≡ 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔(mod 𝒑) 

Check whether 

          𝑯(𝑴‖𝒓′) = 𝒆 → Yes/No 

 

Figure 2. Signing and verification algorithms of BFHP-DLP 

signing scheme 

 

Proof of Correctness. It is easy to see that 

 

𝑨𝒙𝑩𝒚 ≡ 𝒈𝒂𝒙𝒈𝒃𝒚 ≡ 𝒈𝒂𝒙+𝒃𝒚 ≡ 𝒈𝒄(mod 𝒑). (𝟏𝟒) 

 

If the correct 𝒄 is obtained, 𝒓′ will produce 𝑯(𝑴‖𝒓′) = 𝒆. 

 

4. The Updated Cryptanalysis 
 

This section presents the updated cryptanalysis of BFHP-

DLP discovered based on the new techniques described in 

Section 2. The cryptanalysis can be categorized into three 

different attacks. The first attack focuses solely on solving 

DLP, while the second and third attacks are based on the 

assumption of the complexity of the scheme’s key 

generation algorithm is reduced. 

 

4.1 First Attack: Number Field Sieve  

 

Boudot et al. (2019) showed that a DLP over a 795-bit 

prime field can be computed in 18-days using the latest 

computational technologies, well-chosen parameters and 

suitable algorithmic variants. In this attack, the assumption 

is made that their result affects our signing scheme, 

especially the parameters selection criterion in algorithms 

𝓘, 𝓚 and 𝓢. 

In the BFHP-DLP signing scheme, there are three 

instances of DLP, namely 𝑨 ≡ 𝒈𝒂(mod 𝒑) and 𝑩 ≡

𝒈𝒃(mod 𝒑) of algorithm 𝓚 and 𝒓 ≡ 𝒈𝒌(mod 𝒑) of algorithm 

𝓢. Although 𝒂, 𝒃 > 𝒌, since 𝒂, 𝒃 ∈ ℤ𝟐𝒏  and 𝒌 ∈ ℤ𝟐𝒎, where 

𝒏 > 𝒎, but all computations of DLP take place in an 𝒎-bit 

prime field 𝒑, so that 𝒑 ∈ ℤ𝟐𝒎 . From this observation with 

the results of Boudot et al. (2019), it can be noticed that 

those private keys 𝒂, 𝒃 can be retrieved when 𝒎 ≤ 𝟕𝟗𝟓. So, 

a larger 𝒎 is required to ensure that the scheme can exploit 

the security strength of DLP. 

Since the original work by (Abd Ghafar & Ariffin, 2019) 

did not mention the appropriate size of 𝒎 and 𝒏, so it can be 

proposed that 𝒎 is at least 𝟐𝟎𝟒𝟖 and 𝒏 = 𝟐𝒎 = 𝟒𝟎𝟗𝟔. This 

recommendation follows the NIST standard for 

cryptographic keys using DLP (Barker & Dang, 2015). 

 

4.2 Second Attack: Fault Analysis 

 

Every implementation of a cryptosystem attempts to 

reduce the complexity of the cryptographic algorithms. 

Reduced complexity leads to reduce computational time, 

power consumption, or memory capacity, making it 

attractive to be implemented in a smaller device. Based on 

this motivation, it assumed that the possibility to fix the 

value of the parameter 𝒌  is an attractive solution. The fixed 

values result in a fixed 𝒓, since 𝒓 ≡ 𝒈𝒌(mod 𝒑). 

Furthermore, random selection can be omitted so less power 

and memory can be fixed for 𝒓. However, it can be seen that 

this approach can be advantageous for the adversary to 

determine the bits of 𝒌 using the method described in 

Section 2.2.1.  

Definition 2 (Fault analysis adversary, 𝓐𝟏). 𝓐𝟏 is defined 

as an adversary that is able to inject a faulty environment 

into the Algorithm 𝓢 that can invert a bit of 𝒌 at 𝒊th position 

(from the right), 𝒌𝒊 to its complement bit, 𝒌𝒊
′. 

 

Example 1. Let 𝒌 = 𝟑𝟕𝟖𝟕 with bits 111011001011. Given 𝒊 =

𝟖, then 𝑨𝟏can flip 𝒌𝟓 = 𝟏 to 𝒌𝟓
′ = 𝟎, which produces 𝒌′ =

𝟑𝟔𝟓𝟗 with bits 111001001011.Noted that |𝒌 − 𝒌′| =

|𝟑𝟕𝟖𝟕 − 𝟑𝟔𝟓𝟗| = 𝟏𝟐𝟖 = 𝟐𝟕. 

 

The attack is stated in the following theorem. 

 

Proposition 1. Let 𝒌 be the private session key generated in 

algorithm 𝓢. Let 𝓐𝟏 be defined in Definition 2. If 𝒌 is used 

more than 𝒏 − 𝟏 times, then the entire bits of 𝒌 can be 

known. 

 

Proof. Assume that 𝓐𝟏 can change 𝒌𝒊 in 𝒌 is to its 

complement 𝒌𝒊
′ which produces 𝒌′ during the signing process 

in Algorithm 𝓢 as defined in Definition 2. Since the value of 𝒌 

differs from 𝒌′ at 𝒊-th bit position, then |𝒌 − 𝒌′| = 𝟐𝒊−𝟏 or 

 

𝒌 =  {𝒌′ − 𝟐𝒊−𝟏 if the 𝒊 − th bit of 𝒌 = 𝟎 
𝒌′ + 𝟐𝒊−𝟏 if the 𝒊 − th bit of 𝒌 = 𝟏

 

 

Observe that 

𝒔 =  {
𝒄 − (𝒌′ − 𝟐𝒊−𝟏) if the 𝒊 − th bit of 𝒌 = 𝟎 

𝒄 − (𝒌′ + 𝟐𝒊−𝟏) if the 𝒊 − th bit of 𝒌 = 𝟏
. (𝟏) 
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Algorithm 𝓢 computed that  

�̃� ≡ 𝒈𝒌′
(mod 𝒑) (𝟐) 

 

and output  

𝒆′ = 𝑯(𝑴‖�̃�) 

 

to be included in the signature 𝝈. Let 

 

�̃�𝟏 = 𝒔 − 𝟐𝒊−𝟏

�̃�𝟐 = 𝒔 − 𝟐𝒊−𝟏
(𝟑) 

 

then 𝓐𝟏 can obtain the potential candidates for �̃� based on 

(𝟏), (𝟐), and (𝟑) by computing 

 

 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−�̃�𝟏 ≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒔−𝟐𝒊−𝟏)

≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒄−(𝒌′−𝟐𝒊−𝟏)−𝟐𝒊−𝟏)

≡ 𝒈𝒌′
≡ 𝒓�̃�(mod 𝒑) (𝟒)

 

or  

 

 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−�̃�𝟐 ≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒔+𝟐𝒊−𝟏)

≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒄−(𝒌′+𝟐𝒊−𝟏)+𝟐𝒊−𝟏) ≡ 𝒈𝒌′
≡ 𝒓�̃�(mod 𝒑) (𝟓)

 

 

if the 𝒊 − th bit of  𝒌 = 𝟏. Noted that both (𝟒) and (𝟓) 

should be executed by 𝓐𝟏 since, at this point, 𝓐𝟏 still does 

not know if the 𝒊 − th bit of 𝒌 is 0 or 1. By using the outputs 

from (𝟒) and (𝟓), now 𝓐𝟏 can determine the original bits of 

𝒌𝒊 by checking whether   

 

𝒆′ =  {
𝑯(𝑴‖𝒓𝟏  ̃)  if the 𝒊 − th bit of 𝒌 = 𝟎 

𝑯(𝑴‖𝒓𝟐  ̃) if the 𝒊 − th bit of 𝒌 = 𝟏
 

 

It can be shown how 𝓐𝟏 can determine one bit of 𝒌 at 

position 𝒊. If 𝓐𝟏 repeats the same process for 𝒏 − 𝟏 times, 

then 𝓐𝟏 has the total bits of 𝒌 since 𝒌 ∈ ℤ𝟐𝒏  or has 𝒏-bit size. 

This terminates the proof.    

            ∎ 

 

Theorem 1. Let (𝒂, 𝒃) be the private keys generated from 

algorithm 𝓚. Suppose (𝒙, 𝒚) and 𝒌 are randomized values 

from algorithm 𝓢 and 𝒔 = 𝒄 − 𝒌 is one of the signature 

parameters from 𝝈 defined in algorithm 𝓢. If full bits of 𝒌 are 

retrieved from Proposition 1, then (𝒂, 𝒃) can be known. 

  

Proof. By knowing the entire bits of 𝒌, an adversary can 

compute 𝒄 = 𝒔 + 𝒌 since 𝒔 is a public parameter obtained 

from 𝝈. By knowing 𝒄, the adversary can retrieve (𝒂, 𝒃) 

values using the Extended Euclidean algorithm since 𝒂𝒙 +

𝒃𝒚 = 𝒄 and values of (𝒙, 𝒚) are known from 𝝈. This 

terminates the proof.    

                       ∎ 

 

4.2.1 Countermeasures of the Second Attack 

 

The attacks presented in Proposition 1 and Theorem 1 

proved that it is possible for an adversary satisfying 

Definition 2 to retrieve the private keys of the BFHP-DLP 

signing scheme. Therefore, the apparent approach to avoid 

the attack is to never set 𝒌 to a static value. Although this 

approach may be counterproductive to the implementation, 

exposing arbitrary bits of 𝒌 can lead to a specified attack 

called a partial key exposure attack. 

 

4.3 Third Attack: Man-in-the-Middle  

 

Definition 3 (Active adversary, 𝓐𝟐). Let 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆) be 

defined as in Figures 1 and 2. An active adversary 𝓐𝟐 is 

defined as a man-in-the-middle adversary who intercepts 𝝈 

and then modifies it before sending it back to the intended 

recipient of 𝝈. 

 

The attack is described in the following theorem. 

 

Theorem 2. Assume that (𝒂, 𝒃) are the private keys 

generated from algorithm 𝓚. Assume that (𝒙, 𝒚) are random 

values from algorithm 𝓢 and that signature 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆) 

was computed using the same algorithm. If there is an active 

adversary 𝓐𝟐 according to Definition 3, then 𝓐𝟐 can forge a 

signature 𝝈′ = (𝒙, 𝒚, 𝒔′, 𝒆′), which is verified in algorithm 𝓥. 

 

Proof. Suppose that 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆) was generated by Alice 

using algorithm 𝓢. Assuming 𝓐𝟐 is an adversary defined in 

Definition 3, then 𝓐𝟐 can prevent 𝝈 from reaching the 

intended receiver, Bob. 𝓐𝟐 can then compute  

 

𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔 ≡ 𝒓′(mod 𝒑) 

 

using algorithm 𝓥 as in Figure 2 then modifies 𝒓′ by 

computing 

 

𝒓′ ⋅ 𝒈𝜹 ≡ 𝒈𝒌 ⋅ 𝒈𝜹 ≡ 𝒈𝒌+𝜹 ≡ 𝒓′′(mod 𝒑) 

 

for some 𝜹 ∈ ℤ. 𝓐𝟐 also modifies 𝒔 by computing 

 

𝒔 − 𝜹 = 𝒄 − 𝒌 − 𝜹 = 𝒔′. 

 

By using 𝒓′ and a forged message, 𝑴′, 𝓐𝟐 then computes 

forged 𝒆′ by computing 

 

𝒆′ = 𝑯(𝑴′‖𝒓′′) 

 

using a hash function, 𝑯. 𝓐𝟐 then sends 𝝈′ = (𝒙, 𝒚, 𝒔′, 𝒆′) 

and 𝑴′ to Bob, acting like they are from Alice, the original 

sender. Then, Bob compute 

 

𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔′
≡ 𝒈𝒂𝒙 ⋅ 𝒈𝒃𝒚 ⋅ 𝒈−𝒔′

≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒄−𝒌−𝜹) ≡ 𝒈𝒌+𝜹

≡ 𝒓′′(mod 𝒑) 

 

using algorithm 𝓥 and verifies 𝒓′′ by computing 𝑯(𝑴′‖𝒓′′) 

equal to 𝒆′ sent along with the forged 𝝈. It is shown that 𝓐𝟐 

has forged Alice's signature, 𝝈, by converting it to 𝝈′ and then 
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sending it to Bob. Bob has also verified 𝝈′, without knowing 

𝝈′ is a forgery signature. This terminates the proof.  

            ∎ 

 

 4.3.1 Countermeasures of the Third Attack 

 

The third attack is considered the most devastating 

attack on the BFHP-DLP signing scheme because it occurs 

during the most important process of the scheme, which is 

sending the signature to the intended recipient. The attack 

occurs because 𝓐𝟐 can obtain 𝒓 by computing 𝑨𝒙 ⋅ 𝑩𝒚 ⋅

𝒈−𝒔(mod 𝒑) and then modifying it. By depriving 𝓐𝟐 of 

access to the values of 𝒙 and 𝒚, it can be noticed that the 

modification can be prevented. Therefore, the modified 

signature scheme is proposed, which uses an encryption 

function 𝑬𝒏𝒄𝑲𝟏
 with the encryption key, 𝑲𝟏, and a 

decryption function 𝑫𝒆𝒄𝑲𝟐
 with the decryption key, 𝑲𝟐. The 

modified signature algorithms with their corresponding 

verification algorithms are shown in Figure 3. 

 

𝓢′: Modified signature algorithm of 𝑴 → (𝑴, 𝝈, 𝒆) 

Public ephemeral key 

           select 𝒙 randomly from ℤ𝟐𝒎  

           select 𝒚 randomly from ℤ𝟐𝒎  

Private session key 

           compute 𝒄 = 𝒂𝒙 + 𝒃𝒚 

           select 𝒌 randomly from ℤ𝟐𝒏  such that 

           𝒄 − 𝒌 > 𝟐𝒎 and 𝒏 > 𝒎. 

Encrypt verification key using Bob’s public key, 𝒊 

           compute 𝑿 = 𝑬𝒏𝒄𝑲𝟏
(𝒙) and 𝒀 = 𝑬𝒏𝒄𝒊(𝒚) 

Private computation of signing 𝑴 

           compute 𝒔 = 𝒄 − 𝒌 

           compute 𝒓 ≡ 𝒈𝒌(mod 𝒑) 

           𝒆 = 𝑯(𝑴‖𝒓) where 𝑯 is a hash function 

Output public signature 𝝈 = (𝑿, 𝒀, 𝒔, 𝒆)  

 

𝓥′: Modified verification algorithm of (𝑴, 𝝈)  

Decrypt verification key using Bob’s private key, 𝒋 

           compute 𝒙 = 𝑫𝒆𝒄𝑲𝟐
(𝑿) and y= 𝑫𝒆𝒄𝒋(𝒀) 

Verification key 

          compute 𝒓′ ≡ 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔(mod 𝒑) 

Check whether 

          𝑯(𝑴‖𝒓′) = 𝒆 → Yes/No 

 

Figure 3. Modified signing and verification algorithms of 

BFHP-DLP signing scheme 

 

5. Conclusion 
 

Three novel cryptanalyses against the BFHP-DLP signing 

scheme are presented in this study. The first attack applies 

the latest result that successfully solves DLP. This 

countermeasure sets the parameter size of 𝒏 and 𝒎 larger 

than the values attacked by the previous result. This 

countermeasure will not affect the efficiency of the scheme 

because the size of 𝒏 and 𝒎 is the appropriate cryptographic 

size specified in the NIST standard. Then, the second attack 

highlights the danger of specifying the values of 𝒌 to be used 

multiple times, as this can expose the signing scheme to a 

side-channel method called fault analysis. To prevent this 

attack, the signing key algorithm must use an efficient 

pseudorandom number generator to ensure that 𝒌 is 

generated randomly and not static.  Finally, the last attack is 

considered the most devastating attack. It requires an active 

adversary to perform a man-in-the-middle method by 

modifying the transmitted signature 𝝈 to solve the private 

values of the scheme. The countermeasure to this attack 

introduces an encryption scheme that allows a seamless 

signing and verification process without intervention by the 

man-in-the-middle. Although the process can be redundant, 

it can be skipped once a shared private key is created, hence 

increasing its efficiency. These cryptanalyses not only focus 

on the hardness of BFHP, as in the existing cryptanalysis 

against the scheme but also cover the computational 

complexity of DLP and possible attacks against the real 

implementation of the scheme. The countermeasures 

presented will be of great use for the future deployment of 

the scheme. 
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