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TWO-SAMPLE TEST FOR RANDOMLY CENSORED DATA
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Abstract: In this study, a nonparametric test was proposed for the two-sample scale problem, when sample observations are randomly
right censored. The proposed test was based on the extremes of observations as an extension of the widely used Gehan's test for the

two-sample problem. Critical values were obtained through simulations of various lifetime distributions at various sample sizes. Power

performance for the proposed test was investigated considering various distributions. Upon comparing with the Gehan’s test, it was found

that the proposed test has more statistical power and efficiency for some special cases. An empirical experiment with a real-life data set

was also presented.
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1. Introduction

In statistical analysis, nonparametric approaches do not
require any assumptions regarding the distribution of a
population. Two-sample nonparametric tests are employed
to compare the distribution of two samples. Two-sample
scale problems arise when the analyzer is interested in
determining whether the populations follow the same
distribution, or when there is a difference in their scale
parameters. This issue has numerous applications in the field
of Agriculture, Engineering, Business, Trade, Industries, and
Medicine. For the two-sample scale problem, nonparametric
tests have been proposed by Mood (1954), Sukhatme (1957),
Kossler (1994), Kossler & Kumar (2010), and Goyal & Kumar
(2020).

In real life, there are certain situations, where we do not
have the complete information about the data, there
involves the role of censoring, these cases are of much
practical use. We say that an observation is censored when
we do not observe it completely. Censored observations can
be statistically-treated in various forms, ranging from
parametric to nonparametric approaches. Several
nonparametric tests are also available for censored data.
Kaplan & Meier’s (1958) method is marked as a great finding
in the field of survival analysis, especially from the
perspective of nonparametric approaches. This impelled the
advancement of existing nonparametric approaches in the
presence of censored data. Some two-sample nonparametric
tests with censored data are discussed hereafter.
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In the context of industrial life-testing, Halperin (1960)
considered a special case of that by Wilcoxon (1945), which
involved statistics for comparing two samples in the
presence of type-l censoring. A rank order theory for the
two-sample problem was developed by Rao, Savage & Sobel
(1960) when the data were censored. To arrive at an early
decision, a sequential modification to Wilcoxon’s test was
proposed by Alling (1963). Furthermore, for comparing two
samples in the presence of random censoring, Gehan (1965)
proposed a generalized form of Wilcoxon’s test, conditioned
on the observational pattern. Efron (1967) proposed a two-
sample problem with censored data as an extension of
Gehan’s method. Mantel (1967) proposed an approach to
simplify both the method of computation and determination
of the permutation distribution of Gehan’s statistic. Lee,
Desu & Gehan (1975) presented a Monte-Carlo study on a
series of two-sample tests with or without censoring. For an
in-depth literature review, one can refer to the monographs:
Survival analysis by Miller (2011) and Lifetime Data:
Statistical Models and Methods by Deshpande & Purohit
(2015).

The statistical problem we have considered in this study
mostly arises in the field of medicine, wherein we compare
two treatments for their effects on patients’ health and life,
where the observations under study are the lifetimes of
patients. A common problem in clinical trials arises when the
data is not observed completely, or we have partial
information about it; we consider such an observation to be
censored. We considered random censoring, as it is mostly
used in clinical trials due to the failure to follow-up or
termination of the study.
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The proposed distribution-free two-sample test is based
on the extension of Gehan'’s test statistics, whereby for each
individual, the observation is either time to censoring or time
to failure. From the point when the study was initiated, an
observation was noted as time to failure if the patient was
found to be dead or relapsed before a pre-fixed time T.
Moreover, it was noted as time to censored if the patient was
alive until time T, or in remission at time T. In other words,
for two different treatments if n; (n,) is the total patients that
participated in the study, out of which ry (r;) are censored at
time T, then ni-ri (n2-r2) individuals have failed. Two-sample
scale problem involves comparing the survival of these n;
and n; patients. The objective of the study is to propose a
new test that has more efficiency and power with respect to
Gehan’s test for the two-sample scale problem.

The remainder of this paper is structured as follows.
Section 2 defines a newly proposed test statistic. The mean
and variance of the test statistic are evaluated in Section 3.
Critical points of the test statistic at various sample sizes and
percentage censoring are given in Section 4, along with a
comparison of critical points of Gehan’s test statistic. The
asymptotic relative efficiency of the test statistic is derived in
Section 5, and a real-life data example for the statistic is
illustrated in Section 6. The statistical power of the proposed
testis given in comparison to the statistical power of Gehan’s
test at various sample sizes and percentage censoring in
Section 7.

2. The Proposed Test Statistic

Let us suppose that we have two samples, X and Y, with
nq, Ny individuals, randomly allocated to two treatments, A
and B, respectively. Suppose that an experiment was
conducted for a fixed time T, and all the individuals were
followed up. If x;, y; represents the time to failure and x;, y;
represents the (i=
1,2,..,nyandj=1,2,..,n,), the following

time to censoring for all
we have

observations:

1, censored
n, — ry failures

4 1 1
X1 X2s - %1y s treatment A
)
xr1+1!xrl+2J ...,an,

r ! !
Yu Y2 ""yrz'

yr2+1, y‘r2+2' ---:ynz:

T, censored

. treatment B.
n, — r, failures

33

Furthermore, the cumulative distribution functions of
time to failure x;, y; are F; (x), F»(y) and that of the time to
censoring x;, yj are G, (x), G2 (y).

The null hypothesis is:

HO:Fl(t) = Fz(t),
are equally effective),

(t<T) (Treatments A and B

against the alternative

(Treatments A and B are significantly different.)

In the proposed test, we have taken a sub-sample of size
two from each sample, and compared their extremes to
derive more information from the samples. Let (x1,x;) and
(y1,¥2) be the uncensored sub-samples chosen from
samples X and Y respectively. If the maximum of the sub-
sample (x, x,) from the random sample X treated with A is
greater than the maximum of the subsample (y;,y,) from
the random sample Y treated with B, then we assign 1 to the
kernel U;;. Otherwise, we assign —1 to the kernel U;;.

If in the subsample from sample X, one observation is
censored and the other is uncensored, with the censored
value greater than the uncensored value, and observations
in the subsample from sample Y are uncensored. Here, if the
maximum of the subsample of two observations (x1,x;)
from sample X is greater than the maximum of the
subsample of any two observations (y,,y,) from sample Y,
we assign 1 to the kernel U;;. A similar procedure is done for
the opposite case, when one censored and one
uncensored observation comes in the sub-sample from

ie.,

sample Y, and both uncensored come in the subsample from
sample X, we assign —1 to the kernel U;;. For remainder of
the cases, we assign zero to the kernel Uij. In mathematical
terms, the kernel for the proposed test is:
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1, ifMax(xil,xiz) > Max(yjl,yjz) or Max(x{l,xiz) = Max(yjl,yjz)

Uij =9-1, ifMax(xil,xiz) < Max(yjl,yjz) or Max(xil,xiz) < Max(y]’-l,yjz)

0, elsewhere,

where i; # i, in (1,2,...,ny) and j; # j, in (1,2, ...,ny)
Define the statistic V = }; ; U;j, where the sum is extended
over all ny, n, combinations. There will be a contribution to
statistic V' for all possible comparisons where both the
patients have failed and, in all comparisons, where a patient
who is censored has more survival than one who has failed
earlier.

3. The Mean and Variance of Test Statistic

We have considered the same observational pattern
(1965),
be

described by Gehan
observations that can

ie.
settled

if we have nq,n,
in the following
observational pattern:

when we rank the data, then m;’s are the total uncensored

observations at the it"

rank with dissimilar values, and [;’s
are the total randomly right censored observations with
values larger than the observational value at the it" rank, but
should be smaller than the observational value at the

(i + 1) " rank.

E(VIP,Ho) = E(X;;Uij |P,Ho) = 0.

®

The dots at the upright line represent the ordered ranks
of the dissimilar values of time to failure observations, and
these fall at s dissimilar failure dots. Any observation that has
either censored or failed can be characterized in the manner
of the above pattern. Prior to the first failure, any censored
observation will be counted as l; with m; = 0. Generally,
these observations do not yield any difference between A
and B treatments. Therefore, we omit these observations. As
our calculation is restricted to the defined observational
pattern, the omission of these observations does not have
any consequence on mean and variance.

For example, if we have the following sample of survival

times of patients (in months):
6,8,10+,11,11+,13,14+,15 + (the + sign represents a
censored observation at that particular point), the

observational pattern will be:

2
1 1
1
1
2

Suppose, Hy is true, i.e., the survival of patients in both
the treated groups is same. We consider the conditional
mean denoted by E(V|P, Hy) and variance by var(V|P, Hy)
of V under Hy, where P is the observational pattern. The

expectation was considered over the possible number of
n, + n
samples ( 1 n 2) that are equally likely and follow same
1

defined observational pattern. Due to symmetry, we can
easily observe:

2

The variance of V under Hy is restricted to the defined pattern P, and can be defined as:

var(VlP,HO) =E ZUU—E
iLJj

From eq. (2), we know that E(ZL-J- Ui; |P, HO) = 0. Thus, eq. (3) becomes:

ny Ny ny

n;
var(V|P,Hy) = E ZZU5+ Z Zui,-uirﬁ

i=1j=1 i#'=1j=1

ny

2.2

i=1 j#j'=1

34

ZUU P, H,

2

(3)

ij

4)

ny n,
Ui]'Uij' + Z Z UijUi'j' P,HO

i#i'=1j#j'=1
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After evaluating each term of eq. (4), we obtain:

var(V|P,Hy) = n =2

n+ n, —4 n i+ n,—6 n+n,—6
all ). ). )
n1_4

n2_4

n n

In eq. (5), the coefficient of K; is the proportion of times
a specific pair of observations (i,j) turns up in samples X
and Y. Similarly, the coefficient of K, is the proportion of

Z [("T) (Mé_l) + (”;t) (n1 +n, _3Mi

Ky

e+ () ()

(nl + nz) Ky + (nl + nz) + (nl + nz)

K. 5)

n

times a specific pair (i,i’and i # i') turns up in any one of
the samples with observation j from the other sample. Here

" (mi) (Mi—l) (n1 +n, _2Mi - Li—1) " ("111) (Mi2—1) (n1 +n, _1Mi - Li—l)]‘ (6)

1

where the first and second terms in eq. (6) represent the
total number of ways of pairing any failed observation at it"
rank with any three observations at a lesser rank and any
three observations of a rank greater than i respectively. The
third term represents the total number of ways of pairing a
censored observation immediately after the it" rank, with
any three that have failed

N

K, = Z [120 ("1“) (Mts—l) +56 ("111) (n1 +n, —SML.

i=1

~hie1) 4120 (lll

earlier. The fourth term shows the total number of ways of
pairing any failed observation with one of rank lesser than i
and two other observations with a rank greater than i. The
last term represents the total number of ways of pairing any
failed observation with any two observations of a rank lesser
than i and one other observation with a rank greater than i.
Similarly,

)(5)

456 (mi) (Mi1_1) (nl + ny,—M; — L,-_l) —7 (mi) (Mi—l) (n1 + n, _1Mi - Li—l)

1 4

56 () (M) (e e

2

The first and second terms within square brackets in eq.
(7), represent the total number of ways of pairing any failed
observation at the it rank with any five observations of a
lesser rank and any five of a rank greater than i respectively.
The third term shows the total number of ways of pairing any
censored observation immediately after the it rank with
any five that have failed earlier. The Fourth term shows the
total number of ways of pairing any failed observation with
a rank lesser than i and four other observations with a rank
greater than i. The fifth term

_vJ

Mj = Zi=1mi,
—_yJ

L= i=1li

m,; and [; are in their original meanings, as defined initially in this Section.

4, Critical Points

In hypothesis testing, we determine whether sufficient
evidence exists from the sample to accept or reject H.
Critical points are essentially the cut-off values such that if

35

1 4

- Li—1) +24 (mi) (Mi—1) (n1 + n; —M;

1)U 3 2 _LH)] ™

3

shows the total number of ways of pairing any failed
observation with any four observations of a rank lesser than
i and one other observation with a rank greater than i. The
sixth term shows the total number of ways of pairing any
failed observation with any two observations of a rank lesser
than i and three other observations with a rank greater than
i. The last term represents the total number of ways of
pairing any failed observation with any three observations of
a rank lesser than i and two other observations with a rank
greater than i, and

the calculated test statistic value comes out to be greater
than the cut-off value, we reject H,; otherwise, we do not
reject Hy. These values are specific for a test statistic that
depends on the type of test and the level of significance «a.

Using this concept, critical points are found using a
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simulation study for both the tests VV (proposed) and G (by
Gehan 1965). We consider three different lifetime
distributions (Lindley, and Weibull)
generating time to failure observations and Exponential

Exponential for

V—-EV|P,H
, _V—EWIP,Hy)

Jvar(V|P,Hy)

where E(V|P, Hy) and var(V|P, Hy) are given in egs. (2)
and (5). We then find Z, such that P(Z > Z,) = 0.025. This
process is simulated 10,000 times, and the critical points are

distribution for generating time to censored observations.
Two samples, each of size n, are generated from these
distributions, and the standardized test statistic value can be
found using the following formula:

(8)

found as the average of Z,-values. Critical points are given
in Tables 1 — 3 for various censoring percentages (pcens)
and sample sizes (n; = n, = n) for each distribution.

Table 1. Critical points of the proposed test, when the time to failure distribution is Lindley and
time to censoring distribution is Exponential

Test %4 G %4 G %4 G V G
npcens 0.2 0.2 0.3 03 0.4 0.4 0.5 0.5
10 291112 335186  1.97061 3.31972 147104 3.24155 121353  3.07304
15 289617  3.80541  1.96009 3.91377 155739  3.86303  1.38231  3.72432
20 284070 427193  2.04971  4.46372 167048  4.40178 151094  4.23448
25 292921  4.74102 212339  4.92879 176357  4.88847  1.63321  4.73802
30 301728  5.10966  2.24109 539651  1.89059 535712 177043  5.16320

Table 2. Critical points of the proposed test, when both time to failure and
time to censoring distributions are Exponential

Test %4 G %4 G %4 G %4 G
n”cens 0.2 0.2 0.3 0.3 0.4 0.4 05 0.5
10 292186  3.38056  1.91547  3.32851 143057 3.24729 121353  3.06260
15 290303 391751  1.95929  3.93480 1.53092  3.88975  1.33974  3.70345
20 288096  4.40868  2.04536  4.52102  1.64325  4.41977  1.46696  4.22876
25 293422 496588 214505  5.00451 175391  4.87901  1.60609  4.70970
30 3.02035 534874 225501 550358  1.86846 535288  1.73120  5.11489

Table 3. Critical points of the proposed test, when the time to failure distribution is Weibull and
time to censoring distribution is Exponential

Test %4 G V G 1% G % G
npcens 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5
10 293616  3.44826  1.91492 3.33473 138603  3.15828 113679  2.90428
15 294675  4.09885  1.98431 4.013749 150179  3.81971  1.27410  3.52024
20 298755  4.72489  2.07529  4.69799 163558  4.44922  1.43581  4.07413
25 3.03894 530250 2.21491 523519 176892  4.95976 155849  4.51801
30 3.16017  5.86804  2.31089 576923 190151 542111  1.68737  4.98331

5. Asymptotic Relative Efficiency

Herein, we find the asymptotic relative efficiency (ARE) of the proposed test statistic V relative to the usual F — test,

assuming Exponential lifetime distribution. Let us suppose that the time to failure probability density function of a patient who is

receiving treatment A is given as

f1(x) = ¢ exp(—¢x),

and that for a patient who is receiving treatment B is given as

36
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f2(y) = 6¢ exp(—6¢y).

Our interest is to test the hypothesis:

H:F,(t) = F,(6t)

t<T).

Thus, our null hypothesis would be, Hy: 8 = 1. This type of test would be relevant in situations when we are interested
in determining whether there is any constant proportion (8) of failure times of the patients who are receiving treatment B to that

of who are receiving treatment A.

Another competent test for the above hypothesis is to consider t;/t,, following F- distribution with degrees of freedom

(2(ny — 11),2(n, — 1)), where

Ei::

(Zi2y X422 %)

(ny-7y)

2 =

_ (Zl 1yl+zl r2+1yl).

(ny-12)

We aim to find the ARE of the proposed test relative to F test in the situation, when all the individuals enter study at time zero
and the experiment is stopped at time T. The ARE of the proposed V test relative to F test is given by,

(6E(n‘2V)

06

ARE,r = lim

e 1) 8 (nvar(z|H,))
n-2 (nvar(n=2V|H,)) (aE(z)

)

G

7"
9=1>

For F test, it is appropriate to transform the F statistic to z = %log(F), where z is following the Normal distribution

1

2(ni—m1)  2(np—T2)

asymptotically with var = 1( ) and

E(z) = EsE(z]s),

var(z|Hy) = Esvar(z|Hy, s) + vargE(z|Hy, s).

Herein, the observational pattern is defined by the total
sample size (2n) and total failure observations preceding
time T. The expectations and variances of z are calculated
under the conditional pattern, where s =2n—r; — 1, is

1
E(2) = ElogB and

var(z|Hy) =

For the proposed test, we have V = 3, ; U;;, as defined earlier, thus:

ijr

0E(2)
a0

fixed, and then allow variation in s. The calculations are
asymptotic as n,s — oo. Under H,, s follows a Binomial
distribution with mean Zn(l - e‘¢T). Thus,

6=1 2

e (11)

E(V) = n? {Pr(Max(X;,, X;,) > Max(¥,,Y;,) ) + Pr(Max(X{, X;,) = Max(¥;,,¥;,))

—Pr(Max(X;,, X;,) < Max(¥;,,%;,) ) - Pr(Max(X;, X;,) < Max(¥;,¥;,))} (12)

where random variables X and X’ denote the time to
failure and time to censoring of the patients who are
receiving treatment A, and determined by the probability
density function f; (x). Similarly, random variables Y and Y’
denote the time to failure and time to censoring of the
patients who are receiving treatment

Pr(Max(Xll, ) > Max(Yl, ]Z) )+ Pr (Max(X X; ) > Max(Yl, 12))

B, and determined by probability density function f,(y).
Herein, X' =Y’ = T and according to the assumed lifetime
distribution, for a patient receiving treatment A and B, the
probability of being censored at T is e~ 7% and e~T9?

respectively. We now obtain these probabilities as follows:
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T
= 29¢f (1 - (1 — e—d)u)z) (1 _ e—9¢u)e—6¢udu
0

4 2
{(1 0 (1 - e—(1+9)¢>T) m(l _ e—(1+26)¢T) _ ) (1 — e—(2+9)¢T)
_ ﬁ(l _ e—z(1+9)¢r)} ' 13)

and

Pr(Max(X;,X;,) < Max(Y;,,Y;,) ) + Pr (Max(Xll, ,) < Max(Y/, ]2))

T
= 20¢f (1- e‘¢u)2 (1 — e b¢u)e-bugy
0

2 1 2
— 012 (1 = o001 _ 2 (1 _ p-209T _ o—(2+0)0TY _ _ p—2(1+60)¢T
ofz(1-e )2 (1-e )ty t-e ) - )
4 4
(1= e-(t+0)9T " (1 — p—(1+20)9T
arpt-e Mt arm(—e )}‘ (14
Substituting egs. (13) and (14) in eq. (12), we arrive at
E(n~2V) = B{L(l — e=(re)9TY _ L(l — e~(+20)97) _ 1(1 — 2697
1+0) (1+20) 0
—L(l — =0Ty 4 2 (1= e=2+0)67) _ E(l _ e“"l’T)}
2+06) 1+ 6 '
Thus,
IE(m2V) 8 —¢T —2¢r _ 8 _3gr _20 st 2 —4¢T
—_ z{——Zq.')Te ¢T + 6¢pTe 20T — —e=39T — — pTe 3¢ + —PpTe™*¢ } (15)
6 |,_, O 9 3 3
Now,
n, n, n, n, 2
var(n~?V|H,) = n"*E ZZU”_E ZZ ij || Ho
i=1j= i=1j=
n, n, 2
= var(n~?V|H,) = n~*E ZZU” H, . (16)
i=1j=1

Since, E(Z an U; ) =0 and E(Zm an ) = (Z Zﬁtl 124 Ui Uyjr ) Also, E(Zm _1Zj¢] 1 UijUy ,) =0, since
Uj and Uy are independent of each other and have expectatlon zero. Further evaluating each term of eq. (16), we get

2
var(n=2V|Hy) = n~! {5(1 - e‘¢T)3 +2e7¢T(1 - e““)}. 17
Substituting egs. (10), (11), (15) and (17) in eq. (9), we get the ARE of V to F as,

2
(g _ 2¢Te—¢T + 6¢Te_2¢T _ ge—3¢r _ 23—0¢Te_3¢T + %¢Te—4¢r)

AREVF = (18)

T(1— e 9T)t 4 o4T(1 — ¢=67)2
Similarly, we can determine the ARE of the proposed V test to G (Gehan’s test) as,

2
(§ —2¢Te 9T + 6¢pTe 29T — ge_3¢T - %d)Te‘“’T + %¢Te—4¢T) (% (1—e?7) + 4e79T)

AREyq = 2 -
(1- 2972 (L (1 = emomy2 4 e07)

) (19)
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where

total study time

@T

" average failure time on treatment A’

Using egs. (18) and (19), the ARE's of the proposed test V with respect to (w.r.t.) F test and Gehan’s test G for various values of ¢T are shown

in Table 4.

Table 4. ARE of the V test w.r.t. F and G (Gehan) tests for
various values of ¢T

oT -0 1 2 3 4 5 )
177 187 098 126 172 204 237

AREyp g 9 g 2 0 5 0
177 201 117 160 225 270 3.6

AREye g 3 9 7 3 9 0

When the value of ¢T is greater than two, the ARE
for our test with respect to both F test and Gehan’s test
increases with ¢T. The value of ARE with respect to Gehan’s
test is always greater than 1, i.e., our test performs better
than Gehan'’s test for all ¢T considered here. Moreover, the
proposed test performs better than F test for all considered
values, except at ¢T = 2.

6. Real-Life Example

We worked on a real-life example derived from
Stablein & Koutrouvelis (1985), which is based on a trial of
patients who suffered from locally unrestricted gastric
treated with
chemotherapy with radiotherapy. This data offers the

cancer and were chemotherapy and
survival time (in days) for the 45 patients on each treatment.

To check the distribution of data, we applied a
Kolmogorov-Smirnov test and found that this data set
follows Exponential distribution. Our aim is to determine if
there is a significant difference in the survival times of the

patients treated with chemotherapy and chemotherapy with

radiotherapy. The critical value of the proposed test statistic
for sample size (45,45) in the case of Exponential
distribution is found to be = 4.9453 using the procedure
described in Section 4. The standardized test statistic (z) for
this data is = 8.4554. Since the calculated test statistic value
turns out to be greater than its critical value, the null
hypothesis of no significant difference is rejected. It is
concluded that there is a significant difference in the survival
time of the patients treated with chemotherapy and
chemotherapy with radiotherapy.

7. Power Comparison of The Proposed
Test

The statistical power of a test is defined as the probability
that the test rejects the null hypothesis when it is true. Using
the critical values shown in Section 4, the statistical power of
the proposed test and Gehan’s test was computed through
a Monte-Carlo simulation. Data were simulated from three
lifetime distributions viz., Lindley, Exponential and Weibull
10,000 times, with a scale parameter of the second sample
as 8 = 2,3, and 4. The statistical power of the proposed test
V and Gehan’s test G is shown in the Tables 5-7 with same
sample sizes and censoring percentages that we have
considered for computing the critical points.

Table 5. Statistical power of the V and G tests, when the
time to failure distribution is Lindley and time to censoring
distribution is Exponential

pcens
n 0 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5
2 0.395 0.298 0.255 0.290 0.203 0.254 0.141 0.207
10 3 0.611 0.569 0.404 0.483 0.301 0.441 0.204 0.362
4 0.693 0.717 0.474 0.639 0.372 0.549 0.263 0.509
2 0.414 0.379 0.396 0.375 0.360 0.314 0.235 0.277
15 3 0.698 0.642 0.595 0.620 0.494 0.588 0.382 0.526
4 0.767 0.849 0.730 0.782 0.603 0.738 0.424 0.632
2 0.570 0.442 0.498 0.434 0.406 0.404 0.307 0.374
20 3 0.843 0.772 0.771 0.745 0.671 0.698 0.451 0.622
4 0.926 0.911 0.879 0.878 0.750 0.818 0.571 0.793
2 0.681 0.511 0.638 0.509 0.493 0.501 0.374 0.424
25 3 0.935 0.832 0.909 0.822 0.776 0.812 0.599 0.736
4 0.980 0.934 0.963 0.928 0.875 0.934 0.665 0.857
2 0.807 0.579 0.727 0.559 0.605 0.555 0.405 0.504
30 3 0.982 0.888 0.965 0.863 0.878 0.844 0.651 0.794
4 0.995 0.970 0.988 0.952 0.944 0.934 0.792 0.916
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Table 6. Statistical power of the V7 and G tests, when both time to failure and time to censoring distributions are Exponential

Test v G v G v G v G
pcens
n 4 0.2 0.2 03 03 0.4 0.4 0.5 0.5
2 0.203 0.214 0.180 0.179 0.143 0.158 0.129 0.156
10 3 0313 0372 0.281 0.341 0211 0.290 0.190 0.263
4 0.409 0.554 0.350 0.471 0.283 0.434 0.227 0.397
2 0.302 0.235 0.255 0.218 0.202 0.211 0.163 0.208
15 3 0.503 0.472 0.450 0.431 0.391 0.425 0.215 0.379
4 0.630 0.615 0.581 0.575 0.461 0.554 0.333 0.490
2 0.381 0.304 0.338 0.279 0.274 0.286 0.214 0.224
20 3 0.716 0.575 0.603 0.498 0.493 0.489 0.346 0.465
4 0.830 0.764 0.777 0.697 0.634 0.654 0.416 0.599
2 0.501 0.357 0.453 0.329 0.336 0.285 0.229 0.272
25 3 0.825 0.641 0.740 0.637 0.643 0.592 0.426 0.530
4 0.921 0.826 0.883 0.806 0.766 0.757 0.552 0.678
2 0.613 0.388 0.509 0.372 0.434 0.367 0.274 0.316
30 3 0.904 0.749 0.834 0.672 0.709 0.648 0.496 0.620
4 0.981 0.878 0.952 0.835 0.835 0.827 0.646 0.752

Table 7. Statistical power of the VV and G tests, when the time to failure distribution is Weibull and time to censoring distribution is Exponential

Test 4 G 4 G 4 G 14 G
pcens
n 0 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5
2 0.325 0.360 0.278 0.295 0.238 0.251 0.168 0.233
10 3 0.477 0.613 0.421 0.576 0.371 0.484 0.263 0.416
4 0.538 0.798 0.499 0.681 0.427 0.617 0.319 0.550
2 0.478 0.455 0.436 0.428 0.393 0.363 0.267 0.330
15 3 0.723 0.769 0.685 0.725 0.582 0.665 0.439 0.567
4 0.807 0.916 0.769 0.879 0.674 0.808 0.506 0.734
2 0.645 0.514 0.599 0.506 0.499 0.498 0.351 0.430
20 3 0.897 0.859 0.862 0.836 0.752 0.801 0.572 0.723
4 0.957 0.954 0.929 0.920 0.839 0.906 0.665 0.849
2 0.786 0.625 0.717 0.614 0.612 0.598 0.447 0.532
25 3 0.975 0.917 0.942 0.910 0.875 0.869 0.707 0.816
4 0.995 0.977 0.979 0.972 0.953 0.945 0.801 0.921
2 0.864 0.701 0.816 0.695 0.699 0.667 0.537 0.601
30 3 0.992 0.942 0.980 0.938 0.932 0.910 0.803 0.873
4 0.999 0.986 0.995 0.983 0.971 0.970 0.882 0.955
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