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Abstract: This work aims to determine the approximate solutions of nonlinear boundary value problems of higher order obtained through 

the Aboodh Transform Series Decomposition Method (ATSDM), a method designed to find the integral and the inverse transform of the 

problems, expand the exponential function, and simultaneously decompose the nonlinear terms. The results obtained demonstrate that 

ATSDM is an excellent and trusted approximate method that can be employed to obtain accurate results for any problem similar to the 

one presented in this work. 
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1. Introduction 
 

Higher order boundary value problems have been a 

major concern due to their mathematical significance or 

prominence, as well as their great applicability in 

hydrodynamics and hydromagnetics (Agarwal, 1986; 

Wazwaz, 2000, 2000a; Chandrasekhar, 1961; Mahdy et al., 

2020; Abdel-Halim Hassan et al., 2009; Othman et al., 2010). 

 

The analytical solution of the afore-mentioned problems, 

especially the nonlinear ones, have been a problem that is 

challenging to solve. Consequently, researchers have devised 

an alternative approach for obtaining an approximate 

solution in the literature (Oderinu, 2014; Opanuga et al., 

2015, 2017; Akinola et al., 2017; Noor & Mohyud-Din, 2008; 

Hymavathi & Kumar, 2014; Mohyud-din, 2009; Siddiqi et al., 

2009; El-Gamel, 2015; Owolabi et al., 2019; Adeyefa & 

Kuboye, 2020; Farooq et al., 2020; Gbadamosi et al., 2010; 

Amer et al., 2018; Gepreel et al., 2020; Mahdy, 2019; Mahdy 

et al., 2021; Mandy and Youssef, 2021). 

 

This research work derived its motivation from the work 

of Akinola et al. (2016), and extensively explained how the 

higher order problems considered are being transformed by 

the Aboodh Transformation and its inverse (Aboodh 2013, 

2014; Abdelbagy & Mohand, 2016; Mahgoub & Sedeeg, 

2017), how the Series Method is being employed to handle 

the exponential functions (Yalçinbaş, 2002), and how 

nonlinear terms are being decomposed by the means of 

Adomian Polynomials (Adomian, 1988; Abbaoui & 

Cherruault, 1994). The results obtained by the combination 

of the three mentioned methods have demonstrated the 

strength of the Aboodh Transform Series Decomposition 

Method (ATSDM) in terms of efficacy, accuracy and reliability 

over all other related methods available. This method is an 

alternative powerful mathematical tool that can be used in 

obtaining the solution of nonlinear differential equations of 

any order.  

 

This paper is organized into five sections. Section One 

presents the introduction of the newly developed method, 

its formation, and its strength, and then reviews some of the 

related literature. Section Two presents the step by step 

approach of the said method. Section Three presents the 

application and implementation of the method on four 

different types of higher order nonlinear boundary value 

problems using Maple 18 software. Sections Four and Five 

present the conclusion and references of the literature cited, 

respectively. 
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2. Methodology 
 

This section examines the general nonhomogeneous 
nonlinear differential equation. 
 

𝐿𝑢(𝑥) + 𝑅𝑢(𝑥) + 𝑁𝑢(𝑥) = 𝑔(𝑥) .                                                            
(1) 

 
where 𝐿𝑢(𝑥), 𝑅𝑢(𝑥), 𝑁𝑢(𝑥) and 𝑔(𝑥) have their own usual 
meaning. 
 
Eq. (2) was obtained by applying the Aboodh Transform on 
Eq. (1) (Aboodh, 2013, 2014; Abdelbagy & Mohand, 2016; 
Mahgoub & Sedeeg, 2017): 
 

𝐴{𝐿𝑢(𝑥)} = 𝐴{𝑔(𝑥)} − 𝐴{𝑅𝑢(𝑥) + 𝑁𝑢(𝑥)} .                                        
(2) 

 
The Aboodh Transformation of the derivative Eq. (2) gives: 
 

𝐴{𝑢(𝑥)} = ∑
1

𝑣2−𝑛+𝑘

𝑑𝑛𝑓(0)

𝑑𝑥𝑛
+

1

𝑣𝑛
𝐴{𝑔(𝑥)} −𝑛−1

𝑘=0
1

𝑣𝑛
𝐴{𝑅𝑢(𝑥) + 𝑁𝑢(𝑥)}.                          

   (3) 
 
The Aboodh inverse transform of Eq. (3) now becomes: 
 

𝑢(𝑥) =  𝐴−1 [∑
1

𝑣2−𝑛+𝑘

𝑑𝑛𝑓(0)

𝑑𝑥𝑛
𝑛−1
𝑘=0 ] + 𝐴−1 [

1

𝑣𝑛 𝐴{𝑔(𝑥)}] −

 𝐴−1 [
1

𝑣𝑛
𝐴{𝑅𝑢(𝑥) + 𝑁𝑢(𝑥)}] .   

 (4) 
 
Let 𝑢(𝑥) = ∑ 𝑈𝑛(𝑥)∞

𝑛=0  be an infinite series. The 
decomposition of the nonlinear term is now: 
 

𝑁𝑢(𝑥) = ∑ 𝐴𝑛
∞
𝑛=0                                                                                 

(5) 
 
where 𝐴𝑛  can be calculated as: 
 

𝐴𝑛 =
1

𝑛!
 

𝜕𝑛

𝜕𝜆𝑛
 [𝑁(∑ 𝜆𝑖𝑢𝑖

∞
𝑖=0 )]

𝜆=0
,           𝑛 = 0, 1, 2 ….                                

(6) 
 
Substituting Eq. (6) into Eq. (4)  gives: 
 

∑ 𝑢𝑛(𝑥) = 𝑓(𝑥) −  𝐴−1 [
1

𝑣𝑛 𝐴{𝑅 ∑ 𝑢𝑛(𝑥)∞
𝑛=0 +∞

𝑛=0

∑ 𝐴𝑛
∞
𝑛=0 }].                                    

        (7) 
 

where, 
 

𝑓(𝑥) = 𝐴−1 [∑
1

𝑣2−𝑛+𝑘

𝑑𝑛𝑓(0)

𝑑𝑥𝑛
𝑛−1
𝑘=0 ] + 𝐴−1 [

1

𝑣𝑛
𝐴{𝑔(𝑥)}].                                                 

(8) 
 
Suppose 𝑢0(𝑥) = 𝑓(𝑥). Then, the remaining 
terms 𝑢1(𝑥),  𝑢2(𝑥), … was obtained as: 
 

𝑢𝑛+1 =  𝐴−1 [
1

𝑣𝑛 𝐴{𝑅 ∑ 𝑢𝑛(𝑥)∞
𝑛=0 + ∑ 𝐴𝑛

∞
𝑛=0 }] ,   𝑛 ≥ 0.                                              

(9) 
 
The iteration was then obtained from Eq. (9), and the 
solution to Eq. (1) is now; 

 
𝑢(𝑥) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯                                               

(10) 
 

3. Application 
 
Illustration I: Noor & Mohyud-Din (2008) and Othman et al. 
(2010): 
 

𝑦𝑥𝑖𝑖 −  𝑦′′′ = 2𝑒𝑥𝑦2,           0 ≤ 𝑥 ≤ 1.                                          
(11) 

 
subject to the initial-boundary conditions: 
 

𝑦(0) = 𝑦′′(0) = 𝑦𝑖𝑣(0) = 𝑦𝑣𝑖(0) = 𝑦𝑣𝑖𝑖(0) = 𝑦𝑥(0) = 1. 
 

𝑦(1) = 𝑦′′(1) = 𝑦𝑖𝑣(1) = 𝑦𝑣𝑖(1) = 𝑦𝑣𝑖𝑖(1) = 𝑦𝑥(1) = 1. 
 
The analytical solution is:  𝑦 = 𝑒−𝑥 . 
 
Then the exponential function 𝑒𝑥 was expanded by Taylor 
series to have; 
 

𝑒𝑥 = 1 + 𝑥 +  
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯.                                           

(12) 
 
Substituting the Taylor expansion Eq. (12)  into Eq. (10) and 
following the process in Section 2, we have: 
 

𝑦 = 1 − 0.9999999999999999𝑥 +
1

2
𝑥2

− 0.1666666666666667𝑥3 +
1

24
𝑥4

− 0.008333333333333342𝑥5 + ⋯. 
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Table 1. Comparative Analysis of the Absolute Errors for 
Illustration I 

x Exact 

VIM 
Noor & 

Mohyud-
Din (2008) 

HMP 
Othman et 
al., (2010) 

ATSDM 

0 0 0 0 0 

0.2 0.818730 
3.07 × 
10−7 

1.172 × 
10−7 

4.19 × 
10−17 

0.4 0.670320 
4.97 × 
10−7 

8.08 × 10−7 
2.34 × 
10−18 

0.6 0.548811 
4.97 × 
10−7 

1.19× 10−7 
1.23 × 
10−16 

0.8 0.443289 
3.07 × 
10−7 

5.0 × 10−10 
7.50 × 
10−17 

1.0 0.367879 
2.00 × 
10−10 

4.1 × 10−9 
1.07 × 
10−17 

 

 

Figure 1. The Comparison between Exact, VIM, HPM, and 
ATSDM Solution of Illustration I 

 
Illustration II: Considering Oderinu (2014) and Noor & 
Mohyud-Din (2008): 
 

                        𝑦𝑥𝑖𝑖 =
1

2
𝑒−𝑥𝑦2,           0 ≤ 𝑥 ≤ 1.                                               

(13) 
 

subject to 

𝑦(0) = 𝑦′′(0) = 𝑦𝑖𝑣(0) = 𝑦𝑣𝑖(0) = 𝑦𝑣𝑖𝑖(0) = 𝑦𝑥(0) = 2. 
 

𝑦(1) = 𝑦′′(1) = 𝑦𝑖𝑣(1) = 𝑦𝑣𝑖(1) = 𝑦𝑣𝑖𝑖(1) = 𝑦𝑥(1) = 2𝑒. 
 
The analytical solution was given as 𝑦 = 2𝑒𝑥.  
 
Following the same method itemized in Illustration 1 gives: 
 

𝑦 = 2 + 2.00000000000000𝑥 + 𝑥2

+ 0.3333333333333345𝑥3 +
1

24
𝑥4

+ 0.01666666666666600𝑥5 + ⋯. 
 

Table 2. Comparative Analysis of the Absolute Errors for 
Illustration II 

x Exact 
WRM 

Oderinu 
(2014) 

VIM 
Noor & 

Mohyud-Din 
(2008) 

ATSD
M 

0 2.0 0 0 0 

0.
1 

2.210341 0 2.07 × 10−4 
7.49 × 
10−16 

0.
2 

2.442805 0 3.94 × 10−4 
3.23 × 
10−16 

0.
3 

2.699717 1 × 10−14 5.40 × 10−4 
2.38 × 
10−16 

0.
4 

2.983649 0 6.32 × 10−4 
7.05 × 
10−16 

0.
5 

3.297442 1 × 10−14 6.61 × 10−4 
4.17 × 
10−16 

0.
6 

3.644237 2 × 10−14 6.26 × 10−4 
1.52 × 
10−16 

0.
7 

4.027505 1 × 10−14 5.31 × 10−4 
6.93 × 
10−16 

0.
8 

4.451081 1 × 10−14 3.84 × 10−4 
3.50 × 
10−16 

0.
9 

4.919206 0 2.02 × 10−4 
1.01 × 
10−16 

1.
0 

5.436564 0 2.02 × 10−4 
1.10 × 
10−15 

 
 

 

Figure 2: Comparison between Exact, VIM, WRM, and 
ATSDM Solution of Illustration II 

 

Illustration III: Considering Siddiqi et al., (2009): 
 

            𝑦𝑥𝑖𝑖 = (12 + 𝑥 +  𝑥2𝑒𝑥)𝑒𝑥 − 𝑦2,           0 ≤ 𝑥 ≤ 1.                              
(14) 

 
subject to the initial-boundary conditions 
 

𝑦(0) = 0, 𝑦′(0) = 1,
𝑦′′(0) = 2, 𝑦′′′(0) = 3, 𝑦𝑖𝑣(0)
= 4, 𝑦𝑣(0) = 5. 

 
𝑦(1) = 𝑒, 𝑦′(1) = 2𝑒,

𝑦′′(1) = 3𝑒, 𝑦′′′(1) = 4𝑒, 𝑦𝑖𝑣(1)
= 5𝑒, 𝑦𝑣(1) = 6𝑒. 
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Therefore, the analytical solution is given as 𝑦 = 𝑥𝑒𝑥.  
 
Following the same method itemized in Illustration I gives: 
 

𝑦 = (
1

2585016738884976640000
) 

 (647647525324800𝑥12 + 53970627110400𝑥13

+4744670515200𝑥14 + ⋯ .
) 

 
 
 

Table 3. Comparative Analysis of the Absolute Errors for 
Illustration III 

X Exact 
VIM 

Siddiqi et al., 
(2009) 

ATSDM 

0 0 0 0 
0.1 0.1105 5.14 × 10−16 2.39 × 10−25 
0.2 0.2443 5.27 × 10−14 4.08 × 10−21 
0.3 0.4050 7.63 × 10−13 1.01 × 10−16 
0.4 0.5967 4.94 × 10−12 2.28 × 10−16 
0.5 0.8244 2.08 × 10−11 2.81 × 10−16 
0.6 1.0933 6.69 × 10−11 9.76 × 10−16 
0.7 1.4096 1.81 × 10−10 3.25 × 10−17 
0.8 1.7804 4.26 × 10−10 8.28 × 10−17 
0.9 2.2136 9.12 × 10−10 2.67 × 10−16 
1.0 2.7183 1.81 × 10−9 2.33 × 10−16 

 
 

 

Figure 3. Comparison between Exact, VIM, and ATSDM 
Solution of Illustration III. 

 
Illustration IV: Considering the work of Opanuga et al., 
(2017):  
 

            𝑦𝑥𝑖𝑖𝑖 = 𝑒−𝑥𝑦2,           0 ≤ 𝑥 ≤ 1.                                          
(15) 

 
subject to 
 
        𝑦(0) =  𝑦′(0) =  𝑦′′(0) =  𝑦′′′(0) =
  𝑦𝑖𝑣(0) =  𝑦𝑣(0) = 𝑦𝑣𝑖(0) = 1. 

𝑦(1) = 𝑦′(1) = 𝑦′′(1) =   𝑦′′′(1) = 𝑦𝑖𝑣(1) =   𝑦𝑣(1)

= 𝑦𝑣𝑖(1) = 𝑒. 
 
The analytical solution was given as  𝑦 = 𝑥𝑒𝑥.  
 
Following the same method itemized in Illustration I gives: 
 

𝑦 = 1 + 𝑥 +
1

2
𝑥2 +

1

6
𝑥3 +

1

24
𝑥4 +

1

120
𝑥5 +

1

720
𝑥6 + ⋯. 

 
 

Table 4. Comparative Analysis of the Absolute Errors for 
Illustration IV 

 

x Exact 
MADM 

Opanuga et al., 
(2017) 

ATSDM 

0 1 0 0 
0.1 1.105170 5.107 × 10−15 3.75 × 10−16 
0.2 1.221402 3.785 × 10−13 1.66 × 10−16 
0.3 1.349858 3.986 × 10−12 1.06 × 10−16 
0.4 1.491824 1.772 × 10−11 3.29 × 10−16 
0.5 1.648721 4.829 × 10−11 1.61 × 10−16 
0.6 1.822118 9.536 × 10−11 1.35 × 10−18 
0.7 2.013752 1.506 × 10−10 4.42 × 10−16 
0.8 2.225540 2.042 × 10−10 3.72 × 10−16 
0.9 2.459603 2.517 × 10−10 3.26 × 10−16 
1.0 2.718281 2.936 × 10−10 2.63 × 10−16 

 
 

 

Figure 4. Comparison between Exact, MADM, and ATSDM 
Solution of Illustration IV. 
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4. Conclusion 
 

 The comparison of the approximate solutions 

through ATSDM with the analytical one and other 

approximate methods found in the literature was shown 

both in tables and figures above. It can be clearly seen from 

the tables that the magnitude of the errors of the new 

approximate method presented in this work was relatively 

insignificant or minute when placed side by side with the 

one already obtained in the reviewed literature. Similarly, 

the figures demonstrate the rapid convergence of the 

method to the exact. 

 Therefore, the results obtained indicate that the 

method studied in this research is comparatively better in 

terms of efficiency, accuracy, simplicity, and computational 

cost. Hence, the ATSDM or its modification is thus 

recommended to researchers interested in obtaining n 

exact or near exact approximate solution to any nonlinear 

differential equations, or of the form considered in this 

work, irrespective of the order. 
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