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ABSTRACT  We investigate the integral solutions to the Diophantine equation 𝑥2 +
8 ∙ 7𝑏 = 𝑦2𝑟 where 𝑥, 𝑦, 𝑏, 𝑟 ∈  ℤ+. We first generalise the forms of 𝑥 and 𝑦𝑟 that satisfy the 

equation. We then show the general forms of non-negative integral solutions to the equation 

under several conditions. We also investigate some special cases in which the integral 

solutions exist. 
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1. INTRODUCTION 

 

A Diophantine equation is a 

polynomial equation in which only the 

integer solutions are studied. It has a long 

and rich literature in mathematics, 

particularly in number theory. The study of 

such equations was initiated by 

Diophantus of Alexandria (about AD 250). 

He was also one of the first 

mathematicians to introduce symbolism 

into algebra hence making important 

advances in mathematical notation 

(Muriefah & Bugeaud, 2006). 

 

The fundamental problem in 

studying Diophantine equations is to 

determine how many solutions exist. 

Problems in Diophantine equations are 

usually easy to state, but rather difficult to 

solve. Some sophisticated mathematical 

tools may be required to solve some of the 

problems. Fermat’s Last Theorem 

(sometimes known as Fermat’s conjecture) 

is one of the most popular equations since 

1637, where Fermat wrote a note in the 

margin of his copy of Arithmetica stating 

that the equation 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no 

positive integral solutions for 𝑛 > 2. The 

first successful proof was published in the 

20𝑡ℎ century (Wiles, 1995). 

 

There are many integral solutions 

to the equation 𝑥2 + 𝑦2 = 𝑧2 including 

(𝑥, 𝑦, 𝑧) = (3, 4, 5) and (5, 12, 13). The 

Babylonians were aware that the solution 

(𝑥, 𝑦, 𝑧) = (4961, 6480, 8161) exists as 

early as 1500 BC. In fact, the solutions to 

the equation can be derived by using the 

theorem of Pythagoras.  

https://doi.org/10.22452/mjs.vol40no2.3
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Different Diophantine equations have been studied, including the equation, 

 

                                                   𝑥2 + 𝐶 = 𝑦𝑛                                                            (1) 

 

where 𝑥, 𝑦 ≥ 1 and 𝑛 ≥ 3. Results has 

shown that (1) has no solution when 𝐶 = 1 

(Lebesgue, 1850). Lebesgue was also the 

first who obtain non-trivial solutions to the 

equation. It was proven that when 𝐶 = −1, 

the only solution is 𝑥 = 3, which is also a 

notable case of the Catalan conjecture (Ko, 

1965). Cohn then made a huge progress to 

the equation by completing 77 values of 

parameters 𝐶 where 1 ≤ 𝐶 ≤ 100 (Cohn, 

1993). The cases for 𝐶 = 74 and 𝐶 = 86 

were also completed a few years later 

(Mignotte et al., 1996). 

 

 The study of (1) was then extended 

by replacing 𝐶 by a power of a fixed 

prime. Cohn proved that if 𝐶 = 22𝑘+1, 

then the equation has solutions only when 

𝑛 = 3. He also pointed out that when 𝐶 =
22𝑘, the case becomes more complex 

(Cohn, 1992). Le provided the complete 

solutions to the equation 𝑥2 + 2𝑚 = 𝑦𝑛 

with the aid of computers (Le, 1997). The 

solutions for the equation 𝑥2 + 3𝑚 = 𝑦𝑛 

when 𝑚 is odd, and partial results when 𝑚 

is even, were also given a year later (Arif 

et al., 1998). The general solution when 𝑚 

is even was then found by Luca with one 

assumption that both 𝑥 and 𝑦 are coprime 

(Luca, 2000). The assumption where 

gcd(𝑥, 𝑦) = 1 becomes a necessary 

condition to the equation in some 

particular cases when 𝐶 is the square of an 

odd prime number (Le, 2003). 

 

 Luca solved the equation 𝑥2 + 2𝑎 ∙
3𝑏 = 𝑦𝑛, where 𝑎 and 𝑏 denote non-

negative integers and 𝑥 and 𝑦 are coprime 

(Luca, 2002). All positive integral 

solutions of the equation when 𝑛 = 3 and 

𝑛 = 4 are as follows: 

 

When 𝑛 = 3: 

(𝑥, 𝑦) = (5,3), (11,5), (10,7), (17,7), (46,13), (35,13), (595,73), (955,97), (2681,193), 
(39151,1153). 
 

When 𝑛 = 4: 

(𝑥, 𝑦) = (7,3), (23,5), (7,5), (47,7), (287,17). 

 

Luca and Togbe then found all the integral 

solutions to the equation 𝑥2 + 2𝑎 ∙ 5𝑏 =
𝑦𝑛 (Luca et al., 2008). The work was 

extended by investigating the Diophantine 

equation 𝑥2 + 2𝑎 ∙ 7𝑏 = 𝑦𝑛.  The integral 

solutions when 𝑎 = 2 and 𝑦 = 2𝑟 to the 

equation were given (Yow et al., 2013). 

 

 In this study, we investigate the 

integral solutions to the equation 𝑥2 + 8 ∙
7𝑏 = 𝑦2𝑟. We first consider all possible 

combinations for the term 8 ∙ 7𝑏, and solve 

those equations simultaneously. We 

generalise the integral solutions to the 

equation under several conditions. We 

then consider some special cases in which 

the integral solutions exist. 

 

Given that Diophantine equations 

can be used to model different types of 

real-life problems, this generalisation is 

important as it could be used to generate 

solutions for some relevant problems in 

mathematical modelling. The approaches 

used in this generalisation may also be 

extended to find integer solutions of some 

other Diophantine equations. 
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2. A GENERALISATION 
 

 In this section, we determine the 

integral solutions to the equation  

𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟, where 𝑏, 𝑟 ∈ ℤ+. We 

first have the following definition. 

 

Definition 1. Let 𝑏, 𝑟 ∈ ℤ+. The pair of integers (𝑥, 𝑦𝑟) is a generator of solutions to the 

equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟. 

 

We give a general form of 

generators of solutions to the equation 
𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟, as shown in the 

following lemma. 

 

Lemma 1. Let 𝑏, 𝑟 ∈ ℤ+and 𝑟 > 1. The generators of solutions to the equation 𝑥2 + 23 ∙
7𝑏 = 𝑦2𝑟 are given by 

𝑥 = 22−𝑝 ∙ 7𝑏−𝑞 − 2𝑝−1 ∙ 7𝑞, 

𝑦𝑟 = 22−𝑝 ∙ 7𝑏−𝑞 + 2𝑝−1 ∙ 7𝑞, 

 

or 

 

𝑥 = 22−𝑝 ∙ 7𝑞 − 2𝑝−1 ∙ 7𝑏−𝑞, 

𝑦𝑟 = 22−𝑝 ∙ 7𝑞 + 2𝑝−1 ∙ 7𝑏−𝑞, 

 

where 0 < 𝑝 < 3 and 0 ≤ 𝑞 ≤ 𝑏. 

 

Proof. Given that 𝑥2 + 23 ∙ 7𝑏 = 𝑦2𝑟, we have 

 

𝑦2𝑟 − 𝑥2 = 23 ∙ 7𝑏  

(𝑦𝑟 + 𝑥)(𝑦𝑟 − 𝑥) = 23 ∙ 7𝑏  

(𝑦𝑟 + 𝑥)(𝑦𝑟 − 𝑥) = 23−𝑝 ∙ 2𝑝 ∙ 7𝑏−𝑞 ∙ 7𝑞, (2) 

    

where 0 < 𝑝 < 3 and 0 ≤ 𝑞 ≤ 𝑏. 

 

By comparing the factors on both sides 

of (2) using all the possible combinations, 

there exist four valid expressions for 

(𝑦𝑟 + 𝑥) and (𝑦𝑟 − 𝑥) as follows: 

 

i. 𝑦𝑟 + 𝑥 = 23−𝑝 

𝑦𝑟 − 𝑥 = 2𝑝 ∙ 7𝑏−𝑞 ∙ 7𝑞  
 

ii. 𝑦𝑟 + 𝑥 = 2𝑝 

𝑦𝑟 − 𝑥 = 23−𝑝 ∙ 7𝑏−𝑞 ∙ 7𝑞  

iii. 𝑦𝑟 + 𝑥 = 23−𝑝 ∙ 7𝑏−𝑞 

𝑦𝑟 − 𝑥 = 2𝑝 ∙ 7𝑞  
 

iv. 𝑦𝑟 + 𝑥 = 23−𝑝 ∙ 7𝑞 

𝑦𝑟 − 𝑥 = 2𝑝 ∙ 7𝑏−𝑞  

 

Note that when 𝑞 = 0, the sets of 

solutions for equations (i) and (ii) are 

subsets of the sets of solutions for 

equations (iv) and (iii), respectively. Thus, 

by solving equations (iii) and (iv) 

simultaneously, the generators of solutions 

to the equation are given by 
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𝑥 = 22−𝑝 ∙ 7𝑏−𝑞 − 2𝑝−1 ∙ 7𝑞, 

𝑦𝑟 = 22−𝑝 ∙ 7𝑏−𝑞 + 2𝑝−1 ∙ 7𝑞, 

or 

𝑥 = 22−𝑝 ∙ 7𝑞 − 2𝑝−1 ∙ 7𝑏−𝑞, 

𝑦𝑟 = 22−𝑝 ∙ 7𝑞 + 2𝑝−1 ∙ 7𝑏−𝑞, 

 

where 0 < 𝑝 < 3 and 0 ≤ 𝑞 ≤ 𝑏.        

   

 Since (𝑦𝑟 + 𝑥) and (𝑦𝑟 − 𝑥) in (2) 

can be expressed both in either positive or 

negative signs, we now give the parity of 𝑟 

and the sign of 𝑦 in the equation 𝑥2 + 23 ∙

7𝑏 = 𝑦2𝑟, when both (𝑦𝑟 + 𝑥) and 

(𝑦𝑟 − 𝑥) are both expressed in negative 

signs. 

 

Theorem 2. Let 𝑏, 𝑟 ∈ ℤ+, and (𝑦𝑟 + 𝑥)(𝑦𝑟 − 𝑥) = 23 ∙ 7𝑏. If (𝑦𝑟 + 𝑥) and (𝑦𝑟 − 𝑥) are 

both negative, then 𝑟 is odd and 𝑦 has a negative sign. 

 

Proof. By Lemma 1, we can see that the 

sets of solutions for equations (i) and (ii) 

are subsets of the sets of solutions for 

equations (iv) and (iii), respectively. 

Hence, we now focus on (iii) and (iv) in 

this proof. By using (iii) in Lemma 1, we 

have (𝑦𝑟 + 𝑥) = −(23−𝑝 ∙ 7𝑏−𝑞) and 

(𝑦𝑟 − 𝑥) = −(2𝑝 ∙ 7𝑞). Solve these 

equations simultaneously, we obtain

2𝑥 = −(23−𝑝 ∙ 7𝑏−𝑞) + 2𝑝 ∙ 7𝑞  

𝑥 = −(22−𝑝 ∙ 7𝑏−𝑞) + 2𝑝−1 ∙ 7𝑞  

and 

𝑦𝑟 = −(23−𝑝 ∙ 7𝑏−𝑞) + (22−𝑝 ∙ 7𝑏−𝑞) − 2𝑝−1 ∙ 7𝑞  
 = −(23−𝑝 ∙ 7𝑏−𝑞)(1 − 2−1) − 2𝑝−1 ∙ 7𝑞  
 = −(22−𝑝 ∙ 7𝑏−𝑞) − 2𝑝−1 ∙ 7𝑞  
 

where 0 < 𝑝 < 3 and 0 ≤ 𝑞 ≤ 𝑏. 

 

 On the other hand, by using (iv) in Lemma 1, we have (𝑦𝑟 + 𝑥) = −(23−𝑝 ∙ 7𝑞) and 

(𝑦𝑟 − 𝑥) = −(2𝑝 ∙ 7𝑏−𝑞). Then, we have 

 

 

2𝑥 = −(23−𝑝 ∙ 7𝑞) + 2𝑝 ∙ 7𝑏−𝑞  

𝑥 = −(22−𝑝 ∙ 7𝑞) + 2𝑝−1 ∙ 7𝑏−𝑞  

and 

𝑦𝑟 = −(23−𝑝 ∙ 7𝑞) + (22−𝑝 ∙ 7𝑞) − 2𝑝−1 ∙ 7𝑏−𝑞  
 = −(23−𝑝 ∙ 7𝑞)(1 − 2−1) − 2𝑝−1 ∙ 7𝑏−𝑞  
 = −(22−𝑝 ∙ 7𝑞) − 2𝑝−1 ∙ 7𝑏−𝑞  
 

where 0 < 𝑝 < 3 and 0 ≤ 𝑞 ≤ 𝑏. 

 These show that the values of 𝑦𝑟 are negative, which implies that 𝑦 is negative and 𝑟 

is odd. 
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 By Lemma 1 and Theorem 2, if we 

express both (𝑦𝑟 + 𝑥) and (𝑦𝑟 − 𝑥) in 

positive signs, all the values of 𝑦𝑟 are 

positive regardless of what the values of 𝑟 

are. Hence, there exist solutions for 𝑦 in 

this case. Thus, we only consider cases 

where both (𝑦𝑟 + 𝑥) and (𝑦𝑟 − 𝑥) are 

positive hereinafter.

 Recall that we have 0 ≤ 𝑞 ≤ 𝑏 in 

Lemma 1. Since each value of 𝑞 needs to 

be considered, we let 𝑖 be the 𝑖𝑡ℎ set of 

non-negative integral solutions associated 

with each 𝑏. We now determine the 

generators of 𝑥𝑏,𝑖 and 𝑦𝑏,𝑖
𝑟  in the following 

theorem.

Theorem 3. Let 𝑏, 𝑟 ∈ ℤ+. The generators (𝑥𝑏,𝑖 , 𝑦𝑏,𝑖
𝑟 ) of solutions to the equation 𝑥2 + 8 ∙

7𝑏 = 𝑦2𝑟 have the following forms: 

 

 

when 𝑖 is odd,  

𝑥𝑏,𝑖 = 7
1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 − 1), 
 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 + 1), 

 

 

when 𝑖 is even, 

𝑥𝑏,𝑖 = 7
1

2
𝑖−1(7𝑏−𝑖+2 − 2), 

 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−1(7𝑏−𝑖+2 + 2),   

 

where 𝑖 is the 𝑖𝑡ℎ set of non-negative integral solutions associated with each 𝑏. 

 

Proof. Let 𝑏, 𝑟 ∈ ℤ+. By Lemma 1, we can see that the generators for each 𝑖 are given by 

 

𝑥𝑏,𝑖 = 22−𝑝 ∙ 7𝑏−𝑞 − 2𝑝−1 ∙ 7𝑞, (3) 

𝑦𝑏,𝑖
𝑟  = 22−𝑝 ∙ 7𝑏−𝑞 + 2𝑝−1 ∙ 7𝑞, (4) 

 

where 0 < 𝑝 < 3 and 0 ≤ 𝑞 ≤ 𝑏. It is clear that 𝑝 = 1 or 𝑝 = 2. 

 

Based on (3) and (4), we list down 

the positive integral solutions by first 
fixing the values of 𝑏, in a descending 

order. 

 

Suppose 𝑏 = 1. We obtain two sets of solutions, as follows: 

 𝑥1,1 = 13  

 𝑦1,1
𝑟 = 15  

 𝑥1,2 = 5  

 𝑦1,2
𝑟 = 9 

 

Suppose 𝑏 = 2.  We obtain three sets of solutions, as follows: 

 𝑥2,1 = 97 = 13(7) + 6  

 𝑦2,1
𝑟 = 99 = 15(7) − 6 

 𝑥2,2 = 47 = 5(7) + 12   

 𝑦2,2
𝑟 = 51 = 9(7) − 12 

 𝑥2,3 = 7  

 𝑦2,3
𝑟 = 21 = 3(7) 
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Similarly, we have the following 

results for 𝑏 = {3,4,5,6,7}. Due to the 

infinite values of 𝑏 and 𝑖, for simplicity, 

we omit the results for 𝑏 > 7. 

 

Suppose 𝑏 = 3. 

 𝑥3,1 = 685 = 97(7) + 6 = [13(7) + 6](7) + 6 = 13(72) + 6(7) + 6 

 𝑦3,1
𝑟 = 687 = 99(7) − 6 = [15(7) − 6](7) − 6 = 15(72) − 6(7) − 6 

 𝑥3,2 = 341 = 47(7) + 12 = [5(7) + 12](7) + 12 = 5(72) + 12(7) + 12 

 𝑦3,2
𝑟 = 345 = 51(7) − 12 = [9(7) − 12](7) − 12 = 9(72) − 12(7) − 12 

 𝑥3,3 = 91 = 7(7) + 6(7) = 13(7) 

 𝑦3,3
𝑟 = 105 = 21(7) − 6(7) = 15(7) 

 𝑥3,4 = 35 = 5(7) 

 𝑦3,4
𝑟 = 63 = 9(7) 

 

Suppose 𝑏 = 4, 

 𝑥4,1 = 4801 = 13(73) + 6(72) + 6(7) + 6  

 𝑦4,1
𝑟 = 4803 = 15(73) − 6(72) − 6(7) − 6  

 𝑥4,2 = 2399 = 5(73) + 12(72) + 12(7) + 12  

 𝑦4,2
𝑟 = 2403 = 9(73) − 12(72) − 12(7) − 12  

 𝑥4,3 = 679 = 13(72) + 6(7)  

 𝑦4,3
𝑟 = 693 = 15(72) − 6(7)  

 𝑥4,4 = 329 = 5(72) + 12(7)  

 𝑦4,4
𝑟 = 357 = 9(72) − 12(7)  

 𝑥4,5 = 49 = 72  

 𝑦4,5
𝑟 = 147 = 3(72) 

 

Suppose 𝑏 = 5.  

𝑥5,1 = 33613 = 13(74) + 6(73) + 6(72) + 6(7) + 6  

 𝑦5,1
𝑟 = 33615 = 15(74) − 6(73) − 6(72) − 6(7) − 6  

 𝑥5,2 = 16805 = 5(74) + 12(73) + 12(72) + 12(7) + 12  

 𝑦5,2
𝑟 = 16809 = 9(74) − 12(73) − 12(72) − 12(7) − 12  

 𝑥5,3 = 4795 = 13(73) + 6(72) + 6(7)   

 𝑦5,3
𝑟 = 4809 = 15(73) − 6(72) − 6(7)  

 𝑥5,4 = 2387 = 5(73) + 12(72) + 12(7)   

 𝑦5,4
𝑟 = 2415 = 9(73) − 12(72) − 12(7)  

 𝑥5,5 = 637 = 13(72)   

 𝑦5,5
𝑟 = 735 = 15(72)  

 𝑥5,6 = 245 = 5(72)   

 𝑦5,6
𝑟 = 441 = 9(72) 

 

Suppose 𝑏 = 6. 

𝑥6,1 = 235297 = 13(75) + 6(74) + 6(73) + 6(72) + 6(7) + 6  

 𝑦6,1
𝑟 = 235299 = 15(75) − 6(74) − 6(73) − 6(72) − 6(7) − 6  

 𝑥6,2 = 117647 = 5(75) + 12(74) + 12(73) + 12(72) + 12(7) + 12  

 𝑦6,2
𝑟 = 117651 = 9(75) − 12(74) − 12(73) − 12(72) − 12(7) − 12  

 𝑥6,3 = 33607 = 13(74) + 6(73) + 6(72) + 6(7)   

 𝑦6,3
𝑟 = 33621 = 15(74) − 6(73) − 6(72) − 6(7)  
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 𝑥6,4 = 16793 = 5(74) + 12(73) + 12(72) + 12(7)  

 𝑦6,4
𝑟 = 16821 = 9(74) − 12(73) − 12(72) − 12(7)  

 𝑥6,5 = 4753 = 13(73) + 6(72)  

 𝑦6,5
𝑟 = 4851 = 15(73) − 6(72)  

 𝑥6,6 = 2303 = 5(73) + 12(72)   

 𝑦6,6
𝑟 = 2499 = 9(73) − 12(72)  

 𝑥6,7 = 343 = 73   

 𝑦6,7
𝑟 = 1029 = 3(73) 

 

Suppose 𝑏 = 7. 

𝑥7,1 = 1647085 = 13(76) + 6(75) + 6(74) + 6(73) + 6(72) + 6(7) + 6  

 𝑦7,1
𝑟 = 1747087 = 15(76) − 6(75) − 6(74) − 6(73) − 6(72) − 6(7) − 6  

 𝑥7,2 = 823541 = 5(76) + 12(75) + 12(74) + 12(73) + 12(72) + 12(7) + 12 

 𝑦7,2
𝑟 = 823545 = 9(76) − 12(75) − 12(74) − 12(73) − 12(72) − 12(7) − 12 

 𝑥7,3 = 235291 = 13(75) + 6(74) + 6(73) + 6(72) + 6(7)   

 𝑦7,3
𝑟 = 235305 = 15(75) − 6(74) − 6(73) − 6(72) − 6(7)  

 𝑥7,4 = 117635 = 5(75) + 12(74) + 12(73) + 12(72) + 12(7)  

 𝑦7,4
𝑟 = 117663 = 9(75) − 12(74) − 12(73) − 12(72) − 12(7)  

 𝑥7,5 = 33565 = 13(74) + 6(73) + 6(72)  

 𝑦7,5
𝑟 = 33663 = 15(74) − 6(73) − 6(72)  

 𝑥7,6 = 16709 = 5(74) + 12(73) + 12(72)  

 𝑦7,6
𝑟 = 16905 = 9(74) − 12(73) − 12(72)  

 𝑥7,7 = 4459 = 13(73)  

 𝑦7,7
𝑟 = 5145 = 15(73)  

 𝑥7,8 = 1715 = 5(73)   

 𝑦7,8
𝑟 = 3087 = 9(73) 

 

By collecting the generators 𝑥𝑏,𝑖 and 𝑦𝑏,𝑖
𝑟  based on the values of 𝑖, we have 

 𝑥1,1 = 13 

 𝑥2,1 = 13(7) + 6 

 𝑥3,1 = 13(72) + 6(7) + 6  

 𝑥4,1 = 13(73) + 6(72) + 6(7) + 6  

 𝑥5,1 = 13(74) + 6(73) + 6(72) + 6(7) + 6  

 ⋮ 
𝑥𝑏,1 = 13(7𝑏−1) + 6(7𝑏−2) + ⋯ + 6(7) + 6  

 

 𝑦1,1
𝑟 = 15 

 𝑦2,1
𝑟 = 15(7) − 6 

 𝑦3,1
𝑟 = 15(72) − 6(7) − 6 

 𝑦4,1
𝑟 = 15(73) − 6(72) − 6(7) − 6 

 𝑦5,1
𝑟 = 15(74) − 6(73) − 6(72) − 6(7) − 6 

 ⋮ 
𝑦𝑏,1

𝑟 = 15(7𝑏−1) − 6(7𝑏−2) − ⋯ − 6(7) − 6  
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For 𝑏 ≥ 1, the general forms of 

 

𝑥𝑏,1 = 13(7𝑏−1) + 6(7𝑏−2) + ⋯ + 6(7) + 6   

and 

𝑦𝑏,1
𝑟  = 15(7𝑏−1) − 6(7𝑏−2) − ⋯ − 6(7) − 6   

 

are obtained by using the induction on 𝑏, as follows: 

 

(a) For the base case, suppose 𝑏 = 1. The result follows since 𝑥1,1 = 13. 

 Suppose the result is true for 𝑏 = 𝑘 > 1. Let 𝑏 = 𝑘 + 1. We have 

𝑥𝑘+1,1 = 7𝑥𝑘,1 + 6  

 = 7(13(7𝑘−1) + 6(7𝑘−2) + 6(7𝑘−3) + ⋯ + 6(7) + 6) + 6  

 = 13(7𝑘) + 6(7𝑘−1) + 6(7𝑘−2) + ⋯ + 6(72) + 6(7) + 6  
 = 13(7(𝑘+1)−1) + 6(7(𝑘+1)−2) + 6(7(𝑘+1)−3) + ⋯ + 6(7) + 6. 

Therefore, the result is also true for 𝑏 = 𝑘 + 1. 

(b) For the base case, suppose 𝑏 = 1. The result follows since 𝑦1,1
𝑟 = 15. 

 Suppose the result is true for 𝑏 = 𝑘 > 1. Let 𝑏 = 𝑘 + 1. We have 

𝑦𝑘+1,1
𝑟  = 7𝑦𝑘,1

𝑟 − 6  

 = 7(15(7𝑘−1) − 6(7𝑘−2) − 6(7𝑘−3) − ⋯ − 6(7) − 6) − 6  
 = 15(7𝑘) − 6(7𝑘−1) − 6(7𝑘−2) − ⋯ − 6(72) − 6(7) − 6  
 = 15(7(𝑘+1)−1) − 6(7(𝑘+1)−2) − 6(7(𝑘+1)−3) − ⋯ − 6(7) − 6. 

Therefore, the result is also true for 𝑏 = 𝑘 + 1. 

 

By using a similar method, we obtain the following general forms: 

 𝑥𝑏,2 = 5(7𝑏−1) + 12(7𝑏−2) + ⋯ + 12(7) + 12  

 𝑥𝑏,3 = 13(7𝑏−2) + 6(7𝑏−3) + ⋯ + 6(7)  

 𝑥𝑏,4 = 5(7𝑏−2) + 12(7𝑏−3) + ⋯ + 12(7) 

 𝑥𝑏,5 = 13(7𝑏−3) + 6(7𝑏−4) + ⋯ + 6(72) 

 𝑥𝑏,6 = 5(7𝑏−3) + 12(7𝑏−4) + ⋯ + 12(72)  

 𝑥𝑏,7 = 13(7𝑏−4) + 6(7𝑏−5) + ⋯ + 6(73)  

 𝑥𝑏,8 = 5(7𝑏−4) + 12(7𝑏−5) + ⋯ + 12(73) 

 

 𝑦𝑏,2
𝑟 = 9(7𝑏−1) − 12(7𝑏−2) − ⋯ − 12(7) − 12 

 𝑦𝑏,3
𝑟 = 15(7𝑏−2) − 6(7𝑏−3) − ⋯ − 6(7) 

 𝑦𝑏,4
𝑟 = 9(7𝑏−2) − 12(7𝑏−3) − ⋯ − 12(7) 

 𝑦𝑏,5
𝑟 = 15(7𝑏−3) − 6(7𝑏−4) − ⋯ − 6(72) 

 𝑦𝑏,6
𝑟 = 9(7𝑏−3) − 12(7𝑏−4) − ⋯ − 12(72)  

 𝑦𝑏,7
𝑟 = 15(7𝑏−4) − 6(7𝑏−5) − ⋯ − 6(73)  

 𝑦𝑏,8
𝑟 = 9(7𝑏−4) − 12(7𝑏−5) − ⋯ − 12(73) 

  

Observe that the above results can be 

separated into two cases according to the 

parity of 𝑖. By using the induction on 𝑖, we 

now show the general forms of generators 

𝑥𝑏,𝑖 and 𝑦𝑏,𝑖
𝑟 . 
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Suppose 𝑖 is odd. Let 

 

𝑥𝑏,𝑖 = 
13 (7𝑏−(

1

2
𝑖+

1

2
)) + 6 (7𝑏−(

1

2
𝑖+

1

2
)−1) + 6 (7𝑏−(

1

2
𝑖+

1

2
)−2) + ⋯ + 6 (7(

1

2
𝑖+

1

2
)) +

6 (7(
1

2
𝑖+

1

2
)−1).  

For the base case, suppose 𝑖 = 1. It is clear that the result is true. Assume that the 

result is true for 𝑖 = 𝑘 > 1. It can be seen that 

 

𝑥𝑏,𝑘+2 = 7−1 ∙ 𝑥𝑏,𝑘 − 6 (7
𝑘

2
−

1

2) − 6 (7
𝑘

2
−

3

2)  

 

= 
13 (7𝑏−(

1

2
𝑘+

1

2
)−1) + 6 (7𝑏−(

1

2
𝑘+

1

2
)−2) + 6 (7𝑏−(

1

2
𝑘+

1

2
)−3) + ⋯ + 6 (7(

1

2
𝑘+

1

2
)+1) +

6 (7
(

1

2
𝑘+

1

2
)
) + 6 (7

(
1

2
𝑘+

1

2
)−1

) + 6 (7
(

1

2
𝑘+

1

2
)−2

) − 6 (7
𝑘

2
−

1

2) − 6 (7
𝑘

2
−

3

2)  

 

= 
13 (7𝑏−(

1

2
𝑘+

1

2
)−1) + 6 (7𝑏−(

1

2
𝑘+

1

2
)−2) + 6 (7𝑏−(

1

2
𝑘+

1

2
)−3) + ⋯ + 6 (7(

1

2
𝑘+

1

2
)+1) +

6 (7(
1

2
𝑘+

1

2
))  

 

= 

13 (7𝑏−(
1

2
(𝑘+2)+

1

2
)) + 6 (7𝑏−(

1

2
(𝑘+2)+

1

2
)−1) + 6 (7𝑏−(

1

2
(𝑘+2)+

1

2
)−2) + ⋯ +

6 (7(
1

2
(𝑘+2)+

1

2
)) + 6 (7(

1

2
(𝑘+2)+

1

2
)−1). 

 

Therefore, the result is also true for 𝑖 = 𝑘 + 2. Hence, we have 

 

𝑥𝑏,𝑖 = 
13 (7𝑏−(

1

2
𝑖+

1

2
)) + 6 (7𝑏−(

1

2
𝑖+

1

2
)−1) + 6 (7𝑏−(

1

2
𝑖+

1

2
)−2) + ⋯ + 6 (7(

1

2
𝑖+

1

2
)) +

6 (7(
1

2
𝑖+

1

2
)−1).  

 

Second, let 

 

𝑦𝑏,𝑖
𝑟  = 

15 (7
𝑏−(

1

2
𝑖+

1

2
)
) − 6 (7

𝑏−(
1

2
𝑖+

1

2
)−1

) − 6 (7
𝑏−(

1

2
𝑖+

1

2
)−2

) − ⋯ − 6 (7
(

1

2
𝑖+

1

2
)
) −

6 (7(
1

2
𝑖+

1

2
)−1).  

 

For the base case, suppose 𝑖 = 1. It is clear that the result is true. Assume thathe result 

is true for 𝑖 = 𝑘 > 1. It can be seen that 

 

𝑦𝑏,𝑘+2
𝑟  = 7−1 ∙ 𝑦𝑏,𝑘

𝑟 + 6 (7
𝑘

2
−

1

2) + 6 (7
𝑘

2
−

3

2)  

 

= 
15 (7𝑏−(

1

2
𝑘+

1

2
)−1) − 6 (7𝑏−(

1

2
𝑘+

1

2
)−2) − 6 (7𝑏−(

1

2
𝑘+

1

2
)−3) − ⋯ − 6 (7(

1

2
𝑘+

1

2
)+1) −

6 (7(
1

2
𝑘+

1

2
)) − 6 (7(

1

2
𝑘+

1

2
)−1) − 6 (7(

1

2
𝑘+

1

2
)−2) + 6 (7

𝑘

2
−

1

2) + 6 (7
𝑘

2
−

3

2)   

 

= 
15 (7𝑏−(

1

2
𝑘+

1

2
)−1) − 6 (7𝑏−(

1

2
𝑘+

1

2
)−2) − 6 (7𝑏−(

1

2
𝑘+

1

2
)−3) − ⋯ − 6 (7(

1

2
𝑘+

1

2
)+1) −

6 (7(
1

2
𝑘+

1

2
))  

 

= 
15 (7𝑏−(

1

2
(𝑘+2)+

1

2
)) − 6 (7𝑏−(

1

2
(𝑘+2)+

1

2
)−1) − 6 (7𝑏−(

1

2
(𝑘+2)+

1

2
)−2) − ⋯ −

6 (7(
1

2
(𝑘+2)+

1

2
)) − 6 (7(

1

2
(𝑘+2)+

1

2
)−1). 
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Therefore, the result is also true for 𝑖 = 𝑘 + 2. Hence, we have 

 

𝑦𝑏,𝑖
𝑟  = 

15 (7𝑏−(
1

2
𝑖+

1

2
)) − 6 (7𝑏−(

1

2
𝑖+

1

2
)−1) − 6 (7𝑏−(

1

2
𝑖+

1

2
)−2) − ⋯ − 6 (7(

1

2
𝑖+

1

2
)) −

6 (7(
1

2
𝑖+

1

2
)−1).  

 

Note that both 𝑥𝑏,𝑖 and 𝑦𝑏,𝑖
𝑟  are geometric sequences by omitting the first term. By 

setting the common ratio 𝑣 = 7−1, the initial value 𝑎 = 7𝑏−(
1

2
𝑖+

1

2
)−1

 and the number of terms 

𝑛 = 𝑏 − 𝑖, we obtain 

 

𝑥𝑏,𝑖 = 
13 (7𝑏−(

1

2
𝑖+

1

2
)) + 6 [

7
𝑏−(

1
2

𝑖+
1
2

)−1
(1−7−(𝑏−𝑖))

1−7−1
], 

 

𝑦𝑏,𝑖
𝑟  = 15 (7𝑏−(

1

2
𝑖+

1

2
)) − 6 [

7
𝑏−(

1
2

𝑖+
1
2

)−1
(1−7−(𝑏−𝑖))

1−7−1 ]. 

 

By simplifying these two equations, we have 

 

𝑥𝑏,𝑖 = 7
1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 − 1), 
(5) 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 + 1). 
(6) 

 

Similarly, when 𝑖 is even, we have 

 

𝑥𝑏,𝑖 = 5 (7𝑏−
1

2
𝑖) + 12 (7𝑏−

1

2
𝑖−1) + 12 (7𝑏−

1

2
𝑖−2) + ⋯ + 12 (7

1

2
𝑖) + 12 (7

1

2
𝑖−1), 

𝑦𝑏,𝑖
𝑟  = 9 (7𝑏−

1

2
𝑖) − 12 (7𝑏−

1

2
𝑖−1) − 12 (7𝑏−

1

2
𝑖−2) − ⋯ − 12 (7

1

2
𝑖) −12 (7

1

2
𝑖−1). 

 

By omitting the first term, and let 𝑣 = 7−1, 𝑎 = 7𝑏−
1

2
𝑖−1

 and 𝑛 = 𝑏 − 𝑖 + 1, we obtain 

 

𝑥𝑏,𝑖 = 
5 (7𝑏−

1

2
𝑖) + 12 [

7
𝑏−

1
2

𝑖−1
(1−7−(𝑏−𝑖+1))

1−7−1 ], 

 

𝑦𝑏,𝑖
𝑟  = 9 (7𝑏−

1

2
𝑖) − 12 [

7
𝑏−

1
2

𝑖−1
(1−7−(𝑏−𝑖+1))

1−7−1 ]. 

 

That is,  

𝑥𝑏,𝑖 = 7
1

2
𝑖−1(7𝑏−𝑖+2 − 2),  

(7) 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−1(7𝑏−𝑖+2 + 2). 

(8) 

 

 This completes the proof.  

                

Recall that the number 𝑖 is the 𝑖𝑡ℎ 

set of generators (𝑥𝑏,𝑖, 𝑦𝑏,𝑖
𝑟 ) corresponds to 

the number of pairs of generators for 

solution to the equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟. 

We now determine the range of 𝑖 in 𝑥𝑏,𝑖 

and 𝑦𝑏,𝑖
𝑟  for various 𝑏. 
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Lemma 4. Let 𝑏, 𝑟 ∈ ℤ+. The range of 𝑖 associated with each 𝑏 to the equation 𝑥2 + 8 ∙ 7𝑏 =
𝑦2𝑟 is 

0 < 𝑖 ≤ 𝑏 + 1. 

 

Proof. We consider two cases in determining the range of 𝑖. 
 

First, when 𝑖 is odd, we have (5) from Theorem 3, that is 

 

𝑥𝑏,𝑖 = 7
1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 − 1).  

 

Since 𝑥𝑏,𝑖 is non-negative, we have 

 

2 ∙ 7𝑏−𝑖+1 > 1   

7𝑏−𝑖+1 > 
1

2
   

log 7𝑏−𝑖+1 > log
1

2
   

𝑏 − 𝑖 + 1 > −0.3562   

𝑖 < 𝑏 + 1.3562.  

 

Hence, 𝑖 < ⌈𝑏 + 1.3562⌉. This implies that 𝑖 ≤ 𝑏 + 1 for all integers 𝑏. 

  

Next, when 𝑖 is even, we consider (7) from Theorem 3, that is 

 

𝑥𝑏,𝑖 = 7
1

2
𝑖−1(7𝑏−𝑖+2 − 2).  

 

This also implies that 

 

7𝑏−𝑖+2 > 2   

log 7𝑏−𝑖+2 > log 2   

𝑏 − 𝑖 + 2 > 0.3562   

𝑖 < 𝑏 + 1.6438.  

 

Hence, 𝑖 < ⌈𝑏 + 1.6438⌉. This implies that 𝑖 ≤ 𝑏 + 1 for all integers 𝑏.

 

 By combining the two cases above, we have 0 < 𝑖 ≤ 𝑏 + 1 for all integers 𝑏.  

 

From Lemma 4, we have 𝑖 ≤ 𝑏 + 1 for all 

𝑏. When 𝑏 is even and 0 < 𝑖 < 𝑏 + 1, we 

have (5) to (8) as the generators of 𝑥𝑏,𝑖 and 

𝑦𝑏,𝑖
𝑟 . When 𝑏 is even and 𝑖 = 𝑏 + 1, we 

show that 𝑥𝑏,𝑖 and 𝑦𝑏,𝑖
𝑟  attain different 

values as in the following theorem (this 

can also be verified using the examples 

given in Theorem 3). 

 

Theorem 5. Let 𝑏 be an even number and 𝑟 be any positive integer. Then, we have 𝑥𝑏,𝑏+1 =

7
1

2
𝑏
 and 𝑦𝑏,𝑏+1

𝑟 = 3 ∙ 7
1

2
𝑏
 as the generators of solutions to the equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟. 

 



Malaysian Journal Of Science 40(2): xx-xx (June 2021) 

 
 

36 

 

Proof. Since 𝑖 = 𝑏 + 1, the parity of 𝑖 is odd whenever 𝑏 is even. By Theorem 3, we have 

 

𝑥𝑏,𝑖 = 7
1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 − 1)   

 = 7
1

2
(𝑏+1)−

1

2(2 ∙ 7𝑏−(𝑏+1)+1 − 1)  (since 𝑖 = 𝑏 + 1) 

 = 7
1

2
𝑏(2 − 1)  

 

 = 7
1

2
𝑏
. 

 

 

Similarly, we have 

 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 + 1)   

 = 7
1

2
(𝑏+1)−

1

2(2 ∙ 7𝑏−(𝑏+1)+1 + 1)   (since 𝑖 = 𝑏 + 1) 

 = 3 ∙ 7
1

2
𝑏
. 

 

 

This completes the proof.        

         

Corollary 6. Let 𝑏 be an odd number and 𝑟 be any positive integer. Then, we have 𝑥𝑏,𝑏+1 =

5 ∙ 7
𝑏−1

2  and 𝑦𝑏,𝑏+1
𝑟 = 9 ∙ 7

𝑏−1

2  as the generators of solutions to the equation 𝑥2 + 8 ∙ 7𝑏 =

𝑦2𝑟. 

 

Proof. By using a similar approach as in Theorem 5 (this can also be verified by using the 

result in Theorem 3).          

          

 

3. SOME SPECIAL CASES 
 

 In this section, we show that when 

𝑟 = 2, there exist integral solutions to the 

equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟, for certain 

values of 𝑏 and 𝑖. We then show that there 

is no integral solution to the equation if 

𝑟 ≠ 2.

 

 

Theorem 7. Let 𝑡 ∈ ℤ+. Then, 𝑥𝑏,𝑖 = 5 ∙ 72(𝑡−1) and 𝑦𝑏,𝑖 = 3 ∙ 7𝑡−1 are the integral solutions 

to the equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦4 if and only if 𝑏 = 4𝑡 − 3 and 𝑖 = 4𝑡 − 2. 

 

Proof. (⟹) Let 𝑥𝑏,𝑖 and 𝑦𝑏,𝑖 be as stated. Then, we have 

(5 ∙ 72(𝑡−1))2 + 8 ∙ 7𝑏 = (3 ∙ 7𝑡−1)4   

7𝑏 = 74𝑡−3.  

 

This implies that 𝑏 = 4𝑡 − 3. 

Since 𝑥𝑏,𝑖 = 5 ∙ 72(𝑡−1) and 𝑟 = 2, by using (7), we have 

7
1
2

𝑖−1(7𝑏−𝑖+2 − 2) = 5 ∙ 72(𝑡−1)   

74𝑡−
1
2

𝑖−2 − 2 ∙ 7
1
2

𝑖−1
 = 5 ∙ 72(𝑡−1)  (since 𝑏 = 4𝑡 − 3) 

72(2𝑡−
1
2

𝑖)−1 − 2 = 5 ∙ 7(2𝑡−
1

2
𝑖)−1. (multiply by 7−

1

2
𝑖+1

) 
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Now, by letting 𝑥 = 72𝑡−
1

2
𝑖
 and rearranging the equation, we have 

 

7−1 ∙ 𝑥2 − 7−1 ∙ 5𝑥 − 2 = 0   

𝑥2 − 5𝑥 − 14 = 0   

(𝑥 + 2)(𝑥 − 7) = 0.  

 

This implies that 𝑥 = −2 or 𝑥 = 7. 

 

 When 𝑥 = −2, we have 72𝑡−
1

2
𝑖 = −2. There is an inconsistency since the term on the 

left-hand side should always be positive. 

 

Secondly, when 𝑥 = 7, we have 

72𝑡−
1
2

𝑖
 = 7   

2𝑡 −
1

2
𝑖 = 1  

 

𝑖 = 4𝑡 − 2.  

(⟸) Let 𝑏 = 4𝑡 − 3 and 𝑖 = 4𝑡 − 2. By Theorem 3, when 𝑖 is even, we have 

 

𝑥𝑏,𝑖 = 7
1

2
𝑖−1(7𝑏−𝑖+2 − 2)  

 

and 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−1(7𝑏−𝑖+2 + 2)  

 

 

as the generators of solutions to the 

equation 𝑥2 +  8 ∙ 7𝑏 = 𝑦2𝑟. Let 𝑟 = 2. 

Then, we have 𝑥2 +  8 ∙ 7𝑏 = 𝑦4. The 

generators of integral solutions for 𝑥𝑏,𝑖 and 

𝑦𝑏,𝑖
2  in which 𝑏 = 4𝑡 − 3 and 𝑖 = 4𝑡 − 2 

are given by 

 

𝑥𝑏,𝑖 = 𝑥4𝑡−3,4𝑡−2   

 = 7
1

2
(4𝑡−2)−1(7(4𝑡−3)−(4𝑡−2)+2 − 2)  

 

 = 72𝑡−2(7 − 2)   

 = 5 ∙ 72(𝑡−1)   

and 

𝑦𝑏,𝑖
2  = 𝑦4𝑡−3,4𝑡−2

2    

 = 7
1

2
(4𝑡−2)−1(7(4𝑡−3)−(4𝑡−2)+2 + 2)   

 

 = 72𝑡−2(7 + 2)    

 = 32 ∙ 72(𝑡−1).  

 

Therefore, 𝑦4𝑡−3,4𝑡−2 = 3 ∙ 7𝑡−1.        

        

Corollary 8. Let 𝑡 ∈ ℤ+, 𝑏 = 4𝑡 − 3 and 𝑖 = 4𝑡 − 2. Then, 𝑥𝑏,𝑖 = 5 ∙ 72(𝑡−1) and 𝑦𝑏,𝑖 = 3 ∙

7𝑡−1 are the integral solutions to the equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟 if and only if 𝑟 = 2. 

           

Theorem 9. Let 𝑡 ∈ ℤ+, 𝑏 = 4𝑡 − 3, 𝑖 = 4𝑡 − 2 and 𝑟 > 1. If 𝑟 ≠ 2, the equation 𝑥2 + 8 ∙
7𝑏 = 𝑦2𝑟 has no integral solution. 
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Proof. By Theorem 3, when 𝑖 is even, the integral solutions to the equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟 

are generated by (7) and (8). Since 𝑟 > 1 and 𝑟 ≠ 2, possible values of 𝑟 are shown in the 

following table. 

 

Table 1. Values of 𝒓 to the equation 𝒙𝟐 + 𝟖 ∙ 𝟕𝒃 = 𝒚𝟐𝒓 

Cases Values of r 

Case 1: 𝑟 ≡ 0(mod 2) 𝑟 = 2𝑠, 𝑠 > 1 

Case 2: 𝑟 ≡ 1(mod 2) 𝑟 = 1 + 2𝑠 , 𝑠 ≥ 1 

 

By substituting 𝑏 and 𝑖 into (8), we have 

 

𝑦𝑏,𝑖
𝑟  = 7

1

2
(4𝑡−2)−1(74𝑡−3−(4𝑡−2)+2 + 2)  

 

 = 32 ∙ 7(2𝑡−2)   

𝑦𝑏,𝑖 = (3 ∙ 7(𝑡−1))
2

𝑟. (9) 

 

Now, substitute the two different forms of values of 𝑟 into (9), we have the two following 

cases. 

 

Case 1: Suppose 𝑟 = 2𝑠. 

𝑦𝑏,𝑖 = (3 ∙ 7(𝑡−1))
1

𝑠.  
 

Since 𝑠 > 1, the term 3
1

𝑠 is an irrational number. Thus, there exist no integer values for 𝑦𝑏,𝑖. 

Hence, there is no integral solution to the equation when 𝑟 = 2𝑠. 

 

Case 2: Suppose 𝑟 = 1 + 2𝑠. 

𝑦𝑏,𝑖 = (3 ∙ 7(𝑡−1))
2

1+2𝑠.  
 

Since 𝑠 ≥ 1, the term 3
2

1+2𝑠 is an irrational number. Thus, there exist no integer values for 

𝑦𝑏,𝑖. It follows that there is no integral solution to the equation when 𝑟 = 1 + 2𝑠. 

  

 Therefore, we conclude that the equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦2𝑟 has no integral solution if 

𝑟 ≠ 2, together with the stated conditions.       

          

 

4. CONCLUSIONS AND 

FUTURE WORK 
 

 In this study, we give two pairs of 

generators (𝑥𝑏,𝑖 , 𝑦𝑏,𝑖
𝑟 ) to the equation 𝑥2 +

8 ∙ 7𝑏 = 𝑦2𝑟 according to the parity of 𝑖.  

 

When 𝑖 is odd, we have 

𝑥𝑏,𝑖 = 7
1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 − 1), 
 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−

1

2(2 ∙ 7𝑏−𝑖+1 + 1), 
 

 

and when 𝑖 is even, we obtain 

𝑥𝑏,𝑖 = 7
1

2
𝑖−1(7𝑏−𝑖+2 − 2), 

 

𝑦𝑏,𝑖
𝑟  = 7

1

2
𝑖−1(7𝑏−𝑖+2 + 2),   
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where 𝑖 is the 𝑖𝑡ℎ set of non-negative 

integral solutions associated with each 𝑏. 

We then show that 𝑖 ∈ {1,2, … , 𝑏 + 1} for 

all integers 𝑏. The generators of solutions 

to the equation when 𝑖 = 𝑏 + 1 are also 

given. 

 

 We then investigate the case where 

𝑟 = 2, and give the integral solutions to 

the equation 𝑥2 + 8 ∙ 7𝑏 = 𝑦4 using some 

specific values of 𝑏 and 𝑖. We also show 

that there exists no integral solution to the 

equation when 𝑟 ≠ 2 under the same 

condition. 

 

 For future work, we could 

generalise a more general equation 𝑥2 +
2𝑎 ∙ 7𝑏 = 𝑦𝑛. Likewise, we could also 

focus on the cases when 𝑛 is odd, where 

𝑥, 𝑦, 𝑎, 𝑏 ∈ ℤ+. 
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