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ABSTRACT   Hyperspectral images such as the Earth Observer-1 (EO-1) provides 

an efficient method of mapping surface mineralogy because it can measures the energy in 

narrower bands compared with multispectral sensors. Kirkuk anticline which located in 

northern Iraq is one of the most petroleum-rich provinces. It is an asymmetrical, cylindrical 

anticline, with a fold axis trends towards North West- East, South East. Tectonically, Kirkuk 

anticline is located in the Low Folded Zone of the Foreland Fold Belt which belongs to the 

Zagros Collision Zone. The primary goal of the study is to apply satellite processing and 

techniques on the Eo-1 imagery to identify lithological and mineral units at part of Kirkuk 

anticline in northern Iraq. At the beginning of atmospheric influence, the EO-1 image was 

corrected using the FLAASH module in ENVI software. Processing of Minimum Noise 

Fraction (MNF) transformation was applied and then data dimensionality was reduced, as 

well as, the processing of pixel purity index (PPI) was extended to spatial reduction. This 

study tested the potential of spectral angle mapper supervised classification (SAM) 

classification for mapping the lithological and mineral units using the Hyperion imagery. 

Three different sources of endmembers or spectra were used for SAM classifications. 

Source one:  is done by Analytical Spectral Devices (ASD) field Spectrometer in spectral 

analysis laboratory (Remote Sensing Center- Mosul University). Source two: reference 

spectra have been taken from the USGS spectral library. Source three: extracting 

endmembers from the purest pixels in the Hyperion image, which was done by applying 

(Minimum noise fraction) and (pixel purity index). The endmembers were provided and 

generated as the training area for SAM classification. The present findings indicate the great 

potential of EO-1 data for mapping the distribution of alteration minerals and lithological 

units in part of Kirkuk anticline. The classified Hyperion image shows that Jarosite and Illite 

are the most dominant altered minerals. In addition, the main lithological units of the upper 

member of Fatha formation are exposed in the central core of Kirkuk anticline with small 

outcrops scattered towards the flanks. It has been observed that the location of the main 

lithological unit is in full conformity with the geological map.  

 

Keywords: Spectral angle mapper, EO-1 imagery, hyperspectral, mineralogical and 

lithological unit, (ASD) field spectrometer  
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1. INTRODUCTION 

 

 Recently, Remote sensing data 

become significant instruments that have 

been used in many practical researches 

related to natural resources and mineral 

mapping (Melesse et al., 2007; Saibi et 

al., 2018). Geologists are currently 

working in companies of mineral 

exploration, using several data to search 

for new mineral deposits (jaber Nasir, 

2018). Traditional remote sensing 

products, as in the Landsat ETM
+
 and 

Landsat multispectral scanner, are often 

limited in spectral and spatial resolution 

and are produced by sensors that measure 

electromagnetic energy within several 

spectral bands between 3 to 10 bands. In 

this context, multispectral images have 

border spectral bands, therefore they are 

not able to extract and detect fine details 

of the earth's surface targets 

and are not capable of distinguishing targe

ts as well. On the other hand, 

Hyperspectral images such as the Earth 

Observer-1 (EO-1) can measures the 

energy in narrower bands compared to 

multispectral sensors. Hyperspectral 

sensors have more than240 contiguous 

spectral bands, therefore it has sufficient 

spectral resolution to identify specific 

surface targets. Hyperspectral imagery 

also defined as imaging spectroscopy 

(Miao et al., 2007). Recently, these 

images are mostly used in the geological 

survey because it can detect different 

geological formations and distinguish the 

alterations in the rock strata, weathering 

properties, and landforms (Sudharsan et 

al., 2019; Ting-ting & Fei, 2012; Yousefi 

et al., 2016). This allows many of the 

constraints of satellite imagery to be 

resolved when mapping ore 

mineralization zones in high resolution 

(Zhang & Pazner, 2007). The research 

demonstrates digital image processing and 

SAM-classification on the EO-1 imagery 

to identify lithological and mineral units 

at part of Kirkuk anticline in 

northern Iraq. The results and the applied 

technique of this study considered very 

importantly in the practical applications 

related to the field of primary oil survey, 

and the relevance of the detected lithology 

and minerals to the local tectonic setting 

could provide new insights into the 

tectonic control on Kirkuk anticline and 

surrounded area. In addition, the other aim 

of the study is to understand hyperspectral 

data processing, and spectral analysis for 

detecting the areas, which may contain 

economic minerals, as well as to 

determine the appropriate processing 

method to be separated in Eo-1 imagery. 

  

 

2.    STUDY AREA 

 

2.1  Geographical Location 

  

Area under investigation covers 

about (120.5 km
2
) and located in the north 

of Iraq and follows administratively to the 

Kirkuk governorate. The study area 

situated in the northeastern part of Iraq 

and bounded from the northeast by Zagros 

Mountains and the western parts of the 

Lower Zab. While it’s bounded from the 

southeast by the Tigris River, the southern 

Hamreen Mountains, and the 

southwestern parts of the Sirwan River 

(Diyala River), and determined between 

Latitude 35°0.0" N-35°52'30.0" N and 

Longitude 43°55'30.0"E -44°01'30.0" E 

Figure 1. 

 

2.2  Geological Setting 

 

The study area is considered to be 

part of Kirkuk anticline. It is an 

asymmetrical, cylindrical anticline, with a 

trend towards North West- East, South 

East, and a distance of approximately 

(125) km. It is divided into two prominent 

saddles into three structural domes: 

Khurmala, Avanah, and Baba domes (Al-

Sheikhly et al., 2015). 
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Figure 1. Geographical location of Part of Kirkuk anticline 

 

Tectonically, the area is situated in 

the Low Folded Zone of Iraq (Al-Kadhimi 

et al., 1996),  which consists of a series of 

folds with a low amplitude, widely 

spaced, and gentle, trending NW – SE, 

and E-W. According to the Iraqi 

Geological Survey  (Sissakian & Fouad, 

1993), stratigraphic units exposed on the 

anticline in the study area consist of four 

geological formations from Miocene to 

quaternary age, Figure 2. Fatha (Middle 

Miocene) is the oldest formation that 

exposed at the core of Kirkuk anticline 

consists of limestone, gypsum, green 

marl, and claystone. Injana is the second 

formation, that exposed widely in the 

study area includes rock units of red and 

reddish-brown clastic rocks. The third 

formation is Mukdadiya that contains 

pebbly sandstone, siltstone, and claystone, 

while the last exposed formation is Bai 

Hasan that includes conglomerate, 

sandstone, and claystone.  The Quaternary 

deposits are well developed in the study 

area, specifically, polygenetic deposits 

that fill synclinal troughs areas, with other 

various types, for example, slope and 

sheet runoff deposits, residual gravels, 

valley filling deposits. The area under 

investigation has a semi-arid climate with 

an average annual rainfall below (58mm) 

and mean annual temperatures about 

(20C
0
) (Soran, 2008). The topographical 

setting of the study area is characterized 

by gentle to moderate slope terrains with 

elevations of about (300- 370) m .above 

mean sea level (as measured on the digital 

elevation model).
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Figure 2. Geological part of Kirkuk anticline (Sissakian & Fouad, 1993) 

 

 

3.      DATA USED 

 

EO-1 Hyperion hyperspectral 

image (Earth Observation-1) designed by 

NASA’s in (Nov. 2000) (Tiwari et al., 

2010; White et al., 2007). According to 

(Jafari & Lewis, 2012), the EO-1 satellite 

follows the same Landsat orbits of about 1 

min., and the spatial resolution is about 

(30 m) with a standard scene of 42 km 

long and 7.7 km wide. The Hyperion is 

high spectral resolution imagery. The 

instrument operates on the push broom. It 

can be also representative one (100 km × 

7.5 km) area per image and captures the 

area’s arriving radiation in the zone 

ranged from (0.4–2.4 µm), and then the 

Hyperion capable to resolve 220 spectral 

bands in (242 bands of EO-1) with an 

average half full-width of 10.9 (Farifteh et 

al., 2013; Pu et al., 2005). The data 

utilized in this research is a subset 

of the EO-1 Hyperion image (Row 

35/Path 169); dated 3 Nov. 2013. Image 

processing was done using (ENVI) 

software as well as (ArcMap) was used 

for preparing final maps. 

 

 

4. PREVIOUS WORKS 

 

 Previous works focused on the 

geology, tectonic, and geomorphology of 

Kirkuk anticline, but no previous studies 

have used the hyperspectral images. 

Several studies have used Landsat and 

Aster imagery satellite for detecting the 

lithological units and rock alteration by 

applying digital image processing, for 

example, image transformation i.e. 

principal component analysis and image 

ratio, and set of mineralogical and 

lithological mapping have been created. 
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 Finally, some of these studies have 

shown that Kirkuk anticline increasingly 

affected by hydrocarbon seepage (Perry et 

al., 2011; Thannoun, 2012; Thannoun et 

al., 2018). Parts of the Kirkuk anticline 

studied by (Perry et al., 2011). They 

compiled the altered outcrops map by 

applying some of the advanced 

classifications to the Landsat and Aster 

imagery. Also, (Thannoun, 2012) studied 

Avanah dome located within the area 

under investigation, and conducted three  

Landsat image processing to detect 

anomalous areas or alteration zones due to 

hydrocarbon seepages. 

 

 

5. RESEARCH 

METHODOLOGY 

 

 The classification was done by 

performing the spectral angular mapper 

(SAM). The adopted methodology 

consisting of multiple stages is outlined in 

Figure. 3:

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The methodology of the study 

 
5.1 Pre-processing 

 

 Hyperion level 1G / 1T data 

includes some noises,  so digital 

processing has to be conducted first (Datt 

et al., 2003; Farifteh et al., 2013; 

Goodenough et al., 2003; Staenz et al., 

2002). In this research, the EO-1 

Hyperion image was prepared and 

corrected to remove the vertical strip and 

geometric and atmospheric correction. 

 

5.1.1 Band selection (removed non-

information and absorption bands) 

 

Multi bands of EO-1 Hyperion images 

have been removed from the data-set of 

242 bands before utilizing the imagery for 

processing. Some of these bands are not 

having pixel information called zero 

bands (Kumar & Yarrakula, 2017), but 

contain significant noise, water vapor 

absorption, and higher vertical stripping. 

The removed or zeroed bands are set 

between B1to B7, B58 to B76, and B 221 

to B242. Water vapor regions located in 

the bands B120 to B132, B165 to B182, 

and B221 to B224 respectively. Some of 

these bands consist of systematic noise 
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called vertical stripes, which reduce data 

quality and interpretability. By using 

visual interpretation, the bands with 

vertical stripping are recognized and 

removed manually. These bands are B1 to 

B7; B58 to B78; B80 to B82; and B221to 

B242.  The remaining 194 bands have 

been selected for processing. 

 

5.1.2 Vertical strip removal 

 

 One of the most 

challenging troubles with the EO-1 

Hyperion was a lot of long- track stripes 

in some of EO-1bands. Image display 

vertical striping, which means that pixel 

brightness varies from that of the nearby 

pixels, and therefore this noise may 

negatively influence the classification. 

The vertical strip could be the outcome of 

differences in the cross-track direction 

cells (Mason, 2002). Subset images 

include 143 selected bands that have been 

minimized by vertical strip checking for 

each band, and the digital number value is 

replaced by the average of the digital 

number of the neighboring columns. By 

applying the following equations (Goetz 

et al., 2003), all the stripes noise in the 

EO-1 imagery can be processed. 

 

                                            𝑋′𝑖𝑗𝑏 = (𝑋𝑖𝑗𝑏 −  𝜇𝑗𝑏)
𝛿𝑏

𝛿𝑗𝑏
+  𝜇𝑏                       (1) 

                     𝑋′𝑖𝑗𝑏 = (𝑋𝑖𝑗𝑏 −  𝜇𝑗𝑏)
𝛿𝑚

𝛿𝑗𝑏
+  𝜇𝑚                       (2)                  

 
 Where Xijb is the pixel value in 

column j, row i, and band b. Xijb is related 

to calculating distortion of pixel value in 

row i, column j, and band b. Both μb and 

σb is the mean of the standard deviation of 

band k. μjb and σjb is the mean of the 

standard deviation of column j in band b. 

μm and σm, are the mean of the standard 

deviation.  

 

 The subset image imported by 

using tool import utility 

(Hyperion_tool.sav) which is available on 

the ENVI web site 

(http://www.iitvis.com) and all the images 

were converted to ENVI format. 

 

5.1.3 Geometric and Atmospheric 

correction 

 

 The Hyperion EO-1 image was 

conveyed as a radiometrically calibrated 

with level 1G Hyperion data, and the 

image was registered in the Landsat 

ETM+2001 imagery (Path 169, Row 35) 

using the image to image geometrical 

correction method. Several points selected 

as Ground Control Points (GCP) between 

the test and the reference images. The 

accuracy of the operation was important 

and concluded by Root Mean Square 

(RMS). The value of this factor was 0.7 

pixels using 13 GCP. Some of the bands 

chosen for the post-processing.  Such 

bands are quickly atmospheric through 

(FLAASH) a model that provides 

atmospheric correction of hyperspectral 

imagery in (VNIR to SWIR) and uses the 

factors of atmospheric compensation 

directly from the data found within the 

image scene, in the absence of ancillary 

information (Pervaiz et al., 2016; Pervez 

& Khan, 2015). The following equation 

explains the FLAASH method for 

atmospheric correction (Kumar & 

Yarrakula, 2017; Magendran & Sanjeevi, 

2013). 

 

                                   𝐿 = (
𝐴𝑟

1−𝑟𝑒𝑆
) +  (

𝐵𝑟𝑒

1−𝑟𝑒𝑆
) + 𝐿𝑎                       (3)

 

 

 

http://www.iitvis.com/
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 This equation detects the absolute 

reflectance acquired by FLAASH 

modular. r  is the reflectance of the pixel 

surface, pe is the reflectance surface to 

the pixel and S is the atmosphere albedo,  

the surrounding area, La  atmosphere 

radiance backscattered. A and B, are 

coefficients. Atmospheric correction 

carried out by using the extension tool 

(Hyperion tool.sav). 

 

5.2 Post-processing 

  

 Image post-processing includes: 

 

5.2.1    Data dimensionality detection 

 

 In this study, the minimum noise 

fraction transformation (MNF) 

implemented to the pre-atmospheric 

correction image to detect the inherent 

dimensionality of this data and to reduce 

uncorrelated spatial noise. The MNF 

transform based on the concept of 

principal component analysis (often 

referred to as PCA, or Karhunen-Loeve) 

(Hirano et al., 2003). By testing the 

eigenvalues of the MNF processing, it can 

be noticed that the first MNF spectral 

bands (1 and 2) have the highest values, 

while the other one has the lowest values. 

It is possible to show that by using 

scatterplots between each transformed 

image (or fraction) as shown in Figure 5. 

The different MNF images versus each 

other as shown in Figure 4, give a view of 

spectral data distribution, Figures 4a, 4b, 

4d, and 4c show the separated clusters or 

corners while the latest bands (for 

example) are fuzzy. Endmembers that 

show unique spectra or ground 

components can be refined from the 

separated clusters in the scatterplots. 

Depending on the coherent parts, the 

MNF bands can improve the results of 

subsequent processing. The MNF image is 

now ready for SAM classification.  

 

5.2.2    Pixel Purity Index-PPI 

 

 This processing was widely used 

in the EO-1 Hyperion for endmember 

extracting because of its advertising and 

accessibility in the ENVI.  Depending on 

the MNF results, the lower value of MNF 

spectral bands is usually set aside and the 

higher value of further processing bands is 

selected. Throughout this processing, 

these bands are used to identify the most 

intense images (Boardman et al., 1995). In 

this study, PPI was applied to detect 

endmembers for the EO-1 image using the 

same set of randomly produced original 

skewers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. MNF bands scatterplots. (a) band1 v band2, (b) band 2 v band3,  

(c) band3 v band4, (d) band 155 v band 156) 
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5.2.3   Spectral Angle mapper 

classification 

 

 This processing is a physical 

spectral classifier using an n-dimensional 

angle to match reference spectra pixels 

(Kruse et al., 1993). The algorithm of this 

processing based on an optimal 

assumption that a single pixel of images 

reflects one certain ground target cover 

material, and can only be allocated to a 

one ground cover class. This processing 

method determines the spectral similarity 

between the spectra of the pixel by 

estimating the angle between the spectra 

(i.e. the pixel spectra or image spectrums 

or to identified spectra of reference 

reflectance) and by dealing them as 

vectors in a feature space.  The 

classification applied to calibrated 

reflectance data is comparatively 

insensitive to albedo and illumination 

impacts (Hassani, 2017). The endmember 

spectra used in SAM classification can be 

extracted from ASCII files with the ASD 

fields spectroradiometer or spectral 

libraries, as well as, extracted directly 

from image pixels, as the region of 

interest average spectra.  SAM correlates 

the angle between the vectors of image 

pixel and endmember spectrum in the 

feature space Figure 5. , and then the 

smallest angles are more precisely 

exemplified to the reference spectrum. 

Moreover, Pixels far beyond the 

determined high angle threshold are not 

classified. SAM detects the spectral 

similarity by applying the following 

equation: 

 

                        
 

                                                (4) 

 

 

 
Where 𝛼 is a spectral angle, 𝑡 is an image 

pixel spectrum, r is a referee spectrum, 

and n is the number of bands available. 

SAM measures the data points of angular 

direction and not their magnitude, and is 

relatively insensitive to albedo effects and 

illumination (Falcone & Gomez, 2005). 

This can be useful for detecting many 

materials or targets that have very 

different spectra. 

 

 

 

 

 

 

 

 

 

 
Figure 5. The angle in the feature space between reference spectrum and image 

 

 

6. RESULTS AND DISCUSSION 

 

 EO-1 imagery used in this 

research obtained from part of Kirkuk 

anticline. The geological structure known 

as Kirkuk oil fields. Some of the natural 
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gas springs and hydrocarbon seepage has 

been recorded. Therefore, lithological and 

mineral variations result from rocks and 

soil alteration caused by gaseous emission 

from the subsurface reservoir. In mineral 

and lithological mapping using SAM 

classification, it is assumed that each class 

has a single spectral signature and mean 

spectrum of each sample selected (Crosta 

et al., 1998; Rowan et al., 2000) that shall 

be considered as the alternative of the 

spectral form of the class. Key spectral 

signatures of earth's materials allow direct 

detection of vegetation, minerals, rocks, 

and mapping of hydrothermal alteration 

minerals, main lithological units, and 

mineral resources (Mazhari et al., 2017). 

Endmember selection is the most 

important step in the SAM-classification. 

In this classification, three different 

endmembers or spectra sources are used.  

Source one: is done by Analytical Spectral 

Devices (ASD) Spectrometer in spectral 

analysis laboratory (Remote Sensing 

Center- Mosul University), with a full 

range of resolution (i. e. 350  to 2500 

), and then five samples for the main 

lithological units were collected and 

measured by ASD Figure 6. Source two: 

reference spectra have been taken from 

the U. S. Geological Survey spectral 

library for minerals, Figure 7 because, 

without geochemical analysis, it is 

difficult to identify different types of 

altered minerals on the field.  

Endmembers that provided by each 

source, generated as the training area for 

SAM classification. 

 

 

 

 

 

 

 

Figure 6. Measured reflectance curves by 

ASD 

Figure 7.   Reflectance curves by USGS 

spectral library 

 

 In the EO-1 Hyperion image, the 

SAM classifier measures the digital 

number of all bands for  each pixel  and 

then detects the resemblance between the 

direction of the image pixel spectral 

signature i.e., color and the specific class 

in the spectrometer and USGS digital 

library spectral. Source three: deriving 

endmembers from the purest pixels in the 

Hyperion image which was done by    

applying MNF and PPI. The output of the 

SAM classification is a color-coded image 

that displays the highest SAM matching 

for the prevalent content of each pixel. 

After processing the endmember of (13) 

minerals through the SAM classification, 

the result showing a good match at each 

pixel between Hyperion image spectra 

and unknown spectra. The general 

lithological and mineral map generated 
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from EO-1 Hyperion data using SAM 

classification depicted in Figure 8. The 

classified image reveals the distribution of 

specific different lithological and mineral 

types in the area. The location of the main 

lithological unit in the area under 

investigating accurately corresponds to 

the geological map. The upper member of 

Fatha formation located in the central core 

of Kirkuk anticline with scattered and 

small outcrops towards the limbs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Color-coded image of SAM classification 

 

 Gypsum was the most common 

lithology mapped in the classification, 

with marl identified in isolated and small 

clumps. Injana formation was prevailed in 

the central core towards the limbs and the 

Sandstone was the most common 

lithology mapped in the classification. As 

shown in Figure 8, the lithological units of 

Bai Hassan and Mukdadiya formations, 

which commonly consist of 

conglomerates and pebbly sandstone, 

were not record in the classification and 

appeared in black due to the lack of true 

endmembers available in the area under 

investigating. Five hydrocarbon seepage-

related minerals were selected, they are 

Alunite, Illite, Jarosite, Kaolinite, and 

Montmorillonite. The classified Hyperion 

image shows that these minerals are the 

most dominant altered minerals, and it can 

be seen a small amount of Illite mapped in 

the study area. Some of these minerals 

agree with the research, by (Perry et al., 

2011) in the existence of two types of 

minerals in Kirkuk anticline as evidence 

of hydrocarbon seepage occurrence. 

According to (Perry et al., 2011; 

Thannoun, 2012) and (Thannoun et al., 

2018), the entire area of Kirkuk anticline 

has been extensively affected by          
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hydrocarbon seepage, and many of the gas 

springs issued from the subsurface 

reservoir is recorded. Additionally, the 

SAM rule images help better observation 

of lithological and mineral units. Rule 

images measured the distance of actual 

angular (in radians) of each spectrum in 

the EO-1 image and of each endmember 

or spectrum in n-dimensional space with a 

threshold angle equal to (0.3) radians. 

Figure 9, shows the four rule images 

produced by the SAM classification using 

four selected spectra. In the SAM rule 

image, Grayscale density values indicate 

the spectral angle values, as well as, the 

darker locations refer to the reference 

spectrum closer matches and then show 

more relevance to the defined class.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. SAM rule images  
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7. CONCLUSIONS 

 

 SAM classification is taken as an 

example to explain the hyperspectral 

satellite technology to determine 

mineralogical and lithological units. The 

Use of remote sensing in geology, as a 

form of principal procedures in geological 

survey, plays an important role in 

exploring and mineral prospecting. The 

results proved that the distribution of the 

mineralogical and lithological units in the 

outcrops of Kirkuk anticline can be 

identified by integrating between SAM 

classification and hyperspectral imagery. 

SAM classification and endmembers were 

selected from three different sources, 

offering an effective identification method 

for economic minerals. Eo-1 Hyperion 

imagery can recognize mineral precisely 

compared with traditional methods for 

multispectral technology. This study can 

be developed d as a good procedure for 

future studies of ideas related to 

hyperspectral imagery for mineral 

exploration in the Low Folded Zone of 

Iraq. 
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