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ABSTRACT  Photovoltaic (PV) productions should occur within a time interval of 

sunlight. Time mismatches are detected between sunrise and first production hour as well as 

sunset and last production hour in a transmission system operator, Amprion, Germany. 

Hence, in this paper, we investigate this effect using an additive function of two seasonalities 

and a stochastic process. Both seasonalities are based on the mimicked locations, corrected 

by a weighing scale, depending on the first and last production hours' coordinates. The result 

shows that the proposed deterministic model could capture the effect of sunrise and sunset. 

Also, the dynamics of random components are sufficiently explained by an autoregressive 

process of order two. Finally, the Normal Inverse Gaussian distribution is shown as the best 

distribution in explaining noise behaviour, particularly heavy tails in the production's 

residuals, compared to the Gaussian distribution. 

 

Keywords:   Intraday PV production, Sunrise, Sunset, NIG Distribution, AR process 

 

 

ABSTRAK  Penghasilan fotovoltaik (PV) sepatutnya berlaku dalam selang waktu 

cahaya matahari. Berdasarkan kepada kajian di satu pengendali sistem penghantaran, 

Amprion di Jerman, berlaku ketidaksepadanan antara waktu matahari terbit dan penghasilan 

tenaga pertama serta waktu matahari terbenam dan penghasilan tenaga terakhir. Oleh itu, 

dalam makalah ini, kami cuba untuk menyelesaikan isu ketidaksepadanan ini dengan 

mengkombinasikan dua proses berketentuan (tetap) dan satu process tidak berketentuan 

(rawak). Kedua-dua proses berketentuan adalah berdasarkan kepada lokasi mimik, 

diselaraskan oleh satu skala pemberat. Lokasi mimik tersebut bergantung kepada koordinat 

waktu penghasilan tenaga yang pertama dan terakhir. Hasil kajian mendapati bahawa fungsi 

berketentuan yang dicadangkan mampu menjelaskan tentang kesan matahari terbit dan 

terbenam. Manakala, komponen tidak berketentuan pula memadai dijelaskan dengan proses 

autoregresif tahap dua. Akhir sekali, taburan Gaussan Songsang Normal (NIG) dikenalpasti 

sebagai taburan paling sesuai bagi menerangkan ciri-ciri rawak dalam residual penghasilan 

tenaga berbanding taburan Gaussan. 

 

Kata kunci:   Penghasilan fotovoltaik, matahari terbit, matahari terbenam, taburan Gaussan 

Songsang Normal, proses autoregresif.  
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1. INTRODUCTION 

 

Fossil fuels are the dominant 

sources of electricity supply around the 

world. The utilization of fossil fuels has 

triggered debates across various fields, 

such as social, economics, politics, 

environments, and social sciences. Besides 

releasing greenhouse gases, such as carbon 

dioxide and methane, by combusting fossil 

fuels, depletion of sources has raised 

questions about their reliability. All these 

factors have motivated the deployment of 

alternative renewable energy resources, 

such as solar energy, which has grown 

exponentially since the last decade. 

However, the increasing penetration rates 

of solar power will continuously challenge 

the utilities and power system with various 

energy management issues, such as 

demand, storage, and forecasting 

techniques. Solar power critically depends 

on weather conditions. This is the major 

hurdle in the operating system since it may 

increase the variability and uncertainty in 

the production, leading to difficulty in 

dispatching the power. Therefore, to 

ensure power continuity and good 

management of ramp rates of the overall 

power system, it is vital to develop an 

accurate forecasting model, especially for 

the systems with a significant share of 

solar power. The best forecasting model 

will likely improve the economic dispatch 

decision (Martinez-Anido et al., 2016). 

 

Essentially, there are two main 

types of forecasting models of PV 

production: parametric and nonparametric. 

The parametric model (also called 

deterministic or physical) summarizes the 

meteorological resources on the solar cells, 

such as solar irradiation and temperature 

(see Dolara et al., 2015a, Dolara et al., 

2015b, Wolff et al., 2016, and Ogliari et 

al., 2017). In contrast, the nonparametric 

model (stochastic) does not presume any 

knowledge of the internal system. With 

numerous advantages of the latter model, 

many researchers have successfully used 

nonparametric approaches in their studies, 

including Support Vector Machine (SVM) 

(see Felice et al., 2015, Abuella and 

Chowdhury, 2016, and Wolff et al., 2016), 

Numerical Weather Prediction (NWP) (see 

Almeida et al., 2015, and Larson et., 

2016), Partial Functional Linear 

Regression model (PFLRM) (Wang et al., 

2016) and Multivariate Adaptive 

Regression Splines (MARS) (see Li et al., 

2016, and Massida and Marrocu, 2017). 

Artificial Neural Network (ANN) has 

become the most effective and frequently 

used method in forecasting PV output with 

some theory development. A collection of 

research based on this model includes Do 

et al., (2016), Rana et al., (2016), Vaz et 

al., (2016), Cervone et al., (2017), Leva et 

al., (2017), Zhu et al., (2017), and Prakash 

et al., (2018).  

 

Both the parametric and 

nonparametric models have their 

advantages. However, they are also not 

exempted from disadvantages. For 

instance, the parametric model requires 

several parameters, such as ambient and 

cell conditions (Dolara et al., 2015). The 

information of the PV panels' internal 

system is not often available and requires 

some assumptions and simplifications, 

leading to high uncertainty in the output. 

Besides, the deterministic forecasting 

model is not enough to convey the 

system's possible future conditions (van 

der Meer, 2018). 

 

In contrast, the nonparametric 

models are often criticized due to historical 

data requirements, prone to complexity in 

computations, and the high probability of 

overfitting. To overcome their weaknesses, 

combining the unique features of these two 

groups may improve forecasting accuracy. 

Dolara et al., (2015) investigated this 

hybridization in their study extended by 
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Ogliari et al., (2017). As a result, they 

emphasized that the hybrid model turns 

out to be the best forecasting approach. In 

addition, solar power production is 

nonlinear and varying in time. Thus, a 

single forecasting model is insufficient to 

demonstrate the actual generation 

behaviour (Zhu et al., 2017). This 

hybridization is expected to contribute by 

introducing a simpler model but 

sophisticated enough to visualize 

forecasting PV production. A pile of the 

extensive review of forecasting PV 

production covering both spatial and 

temporal modelling has been studied by 

Antonanzas et al., (2016), Gandoman et 

al., (2016), Raza et al., (2016), Barbieri et 

al., (2017), Das et al., (2018), and van der 

Meer et al., (2018). 

 

To choose a suitable approach, it is 

necessary to define the forecast time 

horizon. The intraday time-varying pattern 

is more informative than average daily 

data. The cloud cover changes highly 

caused by the variability of very short-term 

production (up to 30 minutes) (see 

Lipperheide et al., 2015) for a proposed 

forecasting model by computing the 

motion of clouds and day/night cycles. 

Forecasting the intraday production is 

more relevant for dispatching, regulatory, 

and load purposes. However, for electricity 

trading and operational planning, a 1-day 

ahead forecast is often required by the 

energy traders and transmission system 

operators (Wang et al., 2016). Many 

studies have constructed the forecasting 

model for 1-day ahead using ANN and 

NWP methods (see Vaz et al., 2016, 

Larson et al., 2016, Massida and Marrocu, 

2017; Leva et al., 2017). However, using 

these approaches, the valuable information 

of minute data cannot be adopted since 

they used historical aggregated data. 

Moreover, using average data may cause a 

great loss of information and affect the 

forecasting accuracy. Compared to day-

ahead forecasting, the 

forecast for intraday production may lower 

the economic value. Nevertheless, the 

penetration of solar power substantially 

increases, boosting up market 

opportunities. Therefore, the accuracy of 

the intraday forecast should be improved. 

 

This paper concentrates on PV 

power in Germany, an extension of our 

previous work where we modelled 

maximum PV production assumed at 

12:00 pm (see Benth and Ibrahim, 2017). 

By the end of 2016, Germany has been 

ranked as the third-highest PV installed, 

accumulating to 41.2 GW, lost after China 

and Japan (see IEA, 2017). Until recently, 

Wirth (2018) reported that Germany's PV-

generated power has significantly covered 

7.2% of net electricity consumption. These 

statistics show a remarkable contribution 

of PV in German's power system. To 

assure grid quality and stability, a good 

forecasting model is highly demanded. 

Motivated by previous studies mentioned 

above, our main aim in this paper is to 

introduce a hybrid model of the 

deterministic and stochastic model, 

emphasizing its significance by Dolara et 

al., (2015) and Ogliari et al., (2017) using 

a simpler model but sophisticated enough 

to capture both behaviours.  

 

In particular, we will use the sun 

intensity function to capture the 

deterministic behaviour and autoregressive 

process (AR) to detect the random 

characteristics as in our previous paper 

(see Benth and Ibrahim, 2017). Our 

proposed deterministic model does not 

require any complex physical model such 

as a sky image system (see Chow et al., 

2015). Indeed, it is a simple linear 

regression model with some estimated 

parameters that indirectly explain PV 

panels' physical behaviours. Instead of 

using a very complex stochastic model, 

such as ANN and NWP, we propose to use 

the AR model, which has been highly 

acknowledged in finance (see 
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Benth and Šaltytė Benth (2012), for 

extensive literature review on the AR 

process). Its ability to extract the statistical 

properties and detect how much past 

information affects today's value makes 

this model widely useful (Das et al., 2018). 

The main difference between this paper 

and our previous work is the time horizon. 

Previously, we picked the maximal 

production assumed at 12:00 pm. Since 

very short-term forecasting (less than 1 

hour) is more relevant for scheduling the 

reserve and demand response (see 

Antonazas et al., 2016), we are now keen 

to construct a forecasting model of 15 

minutes intervals Intraday Production. 

 

This paper is divided into several 

sections. In Section 2, we describe the 

mismatch between productions and 

sunlight hours using sunrise/sunset 

functions. To overcome the mismatches, 

we mimic the original location such that 

the first/last productions coincide with the 

sunrise/sunset in Section 3.1. In Section 

3.2, we propose an additive function of 

two seasonalities using the mimicked 

locations, corrected by a weighing scale. 

We capture the random effects in Section 

3.3 using the autoregressive process, 

explaining the residuals' appropriate 

distribution. In Section 4, we present the 

results of the empirical analysis. We then 

conclude this paper in Section 5. 

 

 

2. MISMATCH OF 

PRODUCTIONS AND SUNLIGHT 

HOURS 

 

We analyze the intraday PV production 

based on a Transmission System Operator 

(TSO), called Amprion, located in 

Pullheim, Germany, with latitude 51
o
 and 

longitude 6.8
o
. The data collected are 

based on quarter-hourly measurements for 

four years from 1
st
 January 2012 to 31

st
 

December 2015. This generates 96 pieces 

of data in a day and 140160 data in total. 

We use linear interpolation to fill in all 

missing values, constituting approximately 

0.21% of the data. The mean, standard 

deviation, skewness, and kurtosis are 

approximately 860.69MW, 1344.71MW, 

1.75, and 1.63, respectively, while the 

maximum production is around 6630MW. 

  

Before looking further at data 

analysis, we emphasize the key points of 

this paper. PV power can be produced with 

the presence of the sun. To analyse the 

intraday generations, it is crucial to 

investigate if the production occurs in the 

daytime. Thus, in this section, we look 

thoroughly into the variation of the first 

and last production hours in a day to 

ensure the productions are within the time 

interval of the sunlight hours. For this 

purpose, we use a fixed location of 

Amprion to determine the sunrise and 

sunset hours using the following functions 

given by Duffie and Beckman (2013), 

 

                                                
 

       
   [         ]                                            

 

and 

 

                                                
 

       
   [         ]                                           

 

where   and   are latitude and declination angles, respectively. The declination angle is 

given as 

 

            [
   

   
        ]  
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with   is the nth day of the year. The term 

      [         ] is originally based 

on the zenith angle function, which is the 

main function of the sun intensity (will be 

explained in Section 3.2). Knowing the 

earth is rotating at     per hour, we can 

compute the sunrise and sunset from noon. 

Since the sunrise and sunset are changing 

over time based on location, the latitude 

plays a crucial role in determining the 

precise hour.

 

 

 
Figure 1. First production hour (red), last production hour (black), sunrise (blue),  

sunset (green) 

 

Theoretically, the first and last 

productions should coincide with the 

sunrise and sunset hour obtained in 

equation (2.1) and (2.2) above. However, 

they are not exactly matched, as shown in 

Figure 1. The first production hours (red 

curve) seem to fit the sunrise (blue curve) 

rather well, with a 1-hour maximum 

difference. In contrast, the maximum 

difference of the last production hour is 

comparatively bigger being almost two 

hours, where the productions (black curve) 

continuously occur after sunset (green 

curve). These differences seem illogic as 

the productions should happen within 15 

minutes intervals (since we use quarter-

hourly data). In addition, the number of 

sunlight hours is different over the year. 

This leads to an inhomogeneous time 

series, which are certainly not easy to 

analyse. Thus, an alternative way is 

required to fix this problem, particularly 

the sunrise and sunset effects. 

 

 

3. METHODOLOGY 

 

As aforementioned, we are keen to 

build a simple model but sophisticated 

enough to explain intraday production 

behavior. Let us recall step by step 

procedures used in previous papers, as 

mentioned above (one also can refer to 

Veraart and Zdanowicz (2016) for a PV 

analysis). First, we applied a suitable 

seasonality function to explain the 

deterministic behaviour of PV production. 

Next, we eliminated all trend and 

seasonality components to see the random 

effects using the AR process. Finally, we 

then specified an appropriate distribution 

for the residuals by deducting all 

deterministic and stochastic factors. For 

this paper, the modelling approach is 

similar. However, we emphasize the 

quarter-hourly variations. Thus, our 

general model for quarter-hourly 

measurement at time   
             is written as 
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                                                      (     )                                                                       
 

where      is to capture the deterministic 

pattern and      is the stochastic process 

to seize the dynamics of random effects, 

explained in the next section. We use a 

logarithmic transformation to have more 

organized data. 

 

3.1 Mimicking location 

 

To overcome the mismatch 

problem of sunrise/sunset and the first/last 

production, we suggest mimicking the 

original location by finding locations of 

the first and last productions. To specify 

the corresponding productions' exact 

locations, we use equations (2.1) and (2.2) 

above by assuming the first and last 

production hours as the sunrise and sunset 

hour, respectively. As expected, the 

latitude and longitude obtained vary over 

time, where the locations based on 

equations (2.1) and (2.2) do not coincide, 

as demonstrated in Figure 2. Note that 

Figures 2(a) and 2(b) are the latitude of the 

first and last productions, respectively. In 

contrast, Figure 2(c) and Figure 2(d) 

display the longitude. These plots show 

seasonality patterns and significantly 

deviate far from the original location of 

Amprion, where the latitude is 51
o
 and 

longitude 6.8
o
. In contrast, the mimicked 

locations of the first production are -90
o 
≤ 

latitude ≤ 90
o
 (as in Figure 2(a)) and 10.9

o 

≤ longitude ≤ 13.2
o
 (in Figure 2(c)), and 

the locations of the last production hour 

are -90
o
 ≤ latitude ≤ 90

o
 (in Figure 2(b)) 

and 14.94
o 
≤ longitude ≤ 15.1

o
 (in Figure 

2(d)). 
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Figure 2. Mimicked locations of productions. 2(a) Latitude of the first production; 2(b) 

Latitude of the last production; 2(c) Longitude of the first production; 2(d) Longitude of the 

last production. 

 

For a better understanding, let us 

pick one point as an example. As shown in 

Figure 2(a), the latitude of the first 

production hour on 22
nd

 March 2014 

(which is day-752) is -90
o
, the lowest part 

of the southern hemisphere. Clearly, this 

point of latitude is far outside the original 

location. On this date, the declination 

angle, δ, is approximately 0
o
. This means 

the northern and southern hemispheres' 

locations are in spring and autumn 

equinoxes, respectively (refer to Honsberg 

and Bowden, 2016). On the equinoxes, the 

sunlight rays directly to the equator and 

the length of day and night are nearly 

equal. Hence, we can conclude that the 

first PV production hour in the Amprion 

area on 22
nd

 March 2014 is the sunrise in 

the South Pole hemisphere and autumn 

equinox. At 90
o
 or -90

o 
latitude, the 

longitude is undefined. Thus, we use linear 

interpolation to determine an approximate 

point of longitude. However, this new 

location seems unreasonable since 

Germany is in the North East. For this 

paper, we put aside this 

issue since our main objective is to mimic 

the original location to determine a good 

estimate of the first and last production. 

 

One may raise a question: Why did 

the first and last productions not coincide 

with the sunrise and sunset? This is likely 

due to several factors, such as the 

incidence angle of PV panels, type of PV 

cells, ambient temperature, site location, 

and solar spectrum (see Mambrini et al., 

2015). In fact, it is rather complicated to 

quantify such factors. Furthermore, based 

on the discussions by Chattopadhyay 

(2017), the bell shape diurnal curve of PV 

power production is strongly dependent on 

the position of the sun and the 

configurations of the PV modules. 

Moreover, the average European peak load 

is primarily in the evening. Hence west-

facing PV modules are suitable for 

matching the daily load curve. By 

assuming that the majority of the PV 

panels in the area of Amprion coverage are 

facing west, we can deduce that the PV 

panels require some time after the sun rises 
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to generate power. This is one of the major 

reasons for the mismatched curves 

between the first/last production hours 

with the sunrise/sunset. In addition, the 

thickness of the cloud cover also may 

influence the intraday productions. Despite 

the sun intensity being virtually similar for 

the whole plant area, the PV panels 

covered by thicker clouds will have lower 

production. Measuring the thickness of the 

clouds at various locations of PV power 

plants requires highly complex modelling. 

For this paper, to avoid complexity, we 

consider this a random component, easily 

modelled stochastically, as discussed in 

Section 3.3. 

 

As shown in Figures 3(a) and 3(b), 

the mimicked locations obtained are 

dissimilar for the first and last production 

hours. The first production hour in Figure 

3(a) (the red curve) and the last production 

hour in Figure 3(b) (the black curve) show 

that the sunrise and sunset hours properly 

coincide with the corresponding first and 

last production hours. However, the other 

two plots, sunset (green curve in Figure 

3(a)) and sunrise (blue curve in Figure 

3(b)), are not properly matched with the 

last/first production hour. Thus, to 

overcome this issue, we propose a function 

that can capture these differences in the 

next subsection. 

 

 
 

 

 
 

Figure 3. First production hours (red) vs. sunrise (blue) and last production hours (black) vs. 

sunset (green), based on the mimicked location of the first production (Figure 3(a)) and the 

last production (Figure 3(b)). 
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3.2 Capturing the seasonality 

 

In the previous section, two 

different locations were obtained based on 

the first and last production hours. In this  

section, we investigate how to exploit 

these two locations series to capture the 

effect of sunrise and sunset. We let (t) be a 

composition of two seasonality functions 

as follows

 

                                                            (      )                                                
 

where 

 

                      
 

and  

 

                      
 

The seasonality of the first and last 

production hours are respectively denoted 

as       and       with weighing 

scale       latitude  , longitude  , and the 

fitted parameters  . The seasonality 

function is defined as  

 

                                                                 (    )                                                    
   

where      is a generic notation for       
and       while    , and   are the 

estimated parameters representing the 

average level, trend, and amplitude of the 

mean, respectively. Also, the   (    ) 

denotes logarithmic of the sun intensity. 

Before we go deep on our proposed model, 

let us first review the sun intensity 

function, as defined by Duffie and 

Beckman (2013) and Honsberg and 

Bowden (2016), given by 

 

                                                                                 
                                                    

 

where 1.353 represents the solar constant, 

while 0.7 (equivalent to 70%) is the 

percentage of transmission of the solar 

radiation to the earth, and 0.678 is the 

empirical fit to the observed data and non-

uniformities in the atmospheric layers. The 

term AM denotes the air mass function as 

follows

 

 

                                              
 

                                                                                 

 

which is a crucial component to measure 

the reduction of light power passing 

through the atmosphere and is absorbed by 

the surroundings. The main ingredient to 

compute the AM is zenith angle,  , 

measured from a vertical line to the sun's 

angle. The bigger the zenith angle, the 

bigger the value of air mass. For instance, 

if the sun is directly overhead, then    0 

and, therefore, the AM   . It is 

noteworthy to mention that since   varies 

over time (its value should be between    
and    ), the AM is time-dependent. 

 

We can compute the zenith angle, 

 , as 
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where   is the latitude. The declination angle,  , is given by 

 

            [
   

   
       ]   

 

to represent the tilt of the earth. It should vary seasonally between         and -      . 
Meanwhile, the hour angle,  , can be computed as 

 

                  
 

whereby the Local Solar Time, LST, is not the same as local time, LT. Thus, we need to add a 

correction term, TC, given by 

 

LST = LT + TC, 

 

in which 

 

                          
 

Local Standard Time Meridian, LSTM, is expressed as 

 

                
 

and Equation of Time, E, in minutes, is given by 

 
                                                                        
 

where 

 

       
   

   
  

 

The notation       is the difference 

between the local time from Greenwich 

Mean Time (GMT) and n represents the 

number of the day of the year. 

 

The next step is to specify the 

weighing scale,     . Since we know the 

first and last production hours, we can 

define      as follows 

 

                                           {
                              
                             

                                                 

 

Meanwhile, the value between the first and last production hour will follow a simple linear 

function 
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where   is the slope and   is the intercept. The slope can be obtained by 

 

   
            

      
, 

 

and its value will be different for different 

numbers of the production's quarter, j. 

Note that the value of      is zero before 

the first production starts and after the last 

production ends. We plot four examples of 

     with                   in Figure 

4 representing winter, spring, summer, and 

fall, respectively.

 

 

 
Figure 4. Example of weighing scale,      

 

3.3  Autoregressive process 

 

We move on to the stochastic 

modelling of the deseasonalized data, 

which is obtained by subtracting 

logarithmic PV production, with 

          , with     . Similar to our 

previous paper (see Benth and Ibrahim, 

2017), we also apply the AR process to 

explain stochastic behaviour. The discrete-

time AR processes are a parametric family 

of stationary processes expressed in linear 

difference equations with constant 

coefficients (Brockwell and Davis, 1991). 

Its continuous-time version, CAR, 

processes are highly needed in pricing the 

derivatives. Since we are not valuing any 

derivatives in this paper, the AR processes 

are sufficient to explain the dynamics' 

random characteristics. 

 

According to Sfetsos and Coonick 

(1999), the AR process alone, including 

ARMA and ARIMA, tend to a higher 

prediction error since heteroskedasticity is 

rarely considered. To overcome this 

problem, many previous studies have 

combined the ARMA process with another 

process, such as GARCH and neural 

network as in Sun et al., 2015; Benmouiza 

and Cheknane, 2016; Wu and Chan, 2011; 

and David et al., 2016, where the volatility 

was modelled seasonally. However, in this 

paper, we assumed that the volatility is 

constant. Therefore, we will remain with 

our choice of AR process defined as 

 

                                                              ∑            
 
   ,                                          (3.9) 

 

where q denotes a quarter-hour of 

deseasonalized intraday PV production, p 

is the order of the AR process, residuals 

are denoted as    and the coefficient   
   

are the estimated regression coefficients. 
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To describe the residuals' random 

behaviour, we suggest using Normal 

Inverse Gaussian (NIG), initially 

introduced by Barndorff-Nielsen, (1998), 

to fit the logarithmic returns of financial 

data. It belongs to the class of generalized 

hyperbolic distributions and has four 

parameters α, β, δ, μ. Its probability 

density function is given as follows: 

 

              
   

 
   ( √               )

     √           

√           
                    

 

where   represents tails heaviness,   is the 

skewness,   denotes scale parameter,   

refers to the location parameter and    is 

the modified Bessel function of the second 

kind with order 1. Note that        and 

    . 

 

 

4. RESULTS AND DISCUSSION 

 

In this section, we present the findings 

based on our proposed model. First, the 

estimated parameters for average level â, 

trend   , and amplitude of the mean   are 

reported in Table 1. According to the 

results obtained, the trend coefficients 

seem to be very close to zero. Still, their 

values are as significant as other 

parameters with p-values much less than 

0.05 significance level. This implies that 

all parameters introduced in the 

seasonality function are equally important 

for explaining PV production's cyclical 

pattern. 

 

Table 1. Fitted regression parameters of seasonality function 

 â b    

      7.302 2.26e-06 0.795 

      6.916 3.27e-06 0.874 

 

Since all factors are highly 

significant, then we can proceed with our 

empirical analysis to the next step. Using 

equation (3.2), we fit the exponential of 

logarithmic PV production, as shown in 

Figure 5. For a better view, we zoomed in 

the fitted plots of a week production for 

each season. The plots show that the fitted 

values (red curve) are almost similar on 

each of the four plots, but the productions 

(black curve) vary over the estimation 

period. Moreover, the fitted curves are 

rather weak in explaining the seasonality 

pattern during the day since the daily 

productions seem to be much higher than 

the red curve predictions. However, the 

fitted curve captured the sunrise and sunset 

of production very well. Since our main 

focus is to capture the effect of sunrise and 

sunset, we can conclude that we managed 

to explain the variabilities in the first and 

last production hours by mimicking the 

location. 
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Figure 5. Fitted PV production: Production (Black), Fitted (Red). 5(a) Winter, 5(b) Spring, 

5(c) Summer, 5(d) Fall. 
 

Before presenting the AR model's 

significant order, we first show the plot of 

the autocorrelation function (ACF) of 

deseasonalized data in Figure 6. The plot 

shows exponentially decaying ACF,  

implying that the proposed deterministic 

function in equation (3.2) explains 

seasonality behaviour. Care must be taken 

when calculating lags of ACF since the 

current deseasonalized intraday production  
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depends on the previous quarter-hour on 

the same day. Thus, the maximum lag 

should not be greater than the total quarter 

hours of the day. 

 

 
Figure 6. ACF of deseasonalized intraday PV production 

 

In fact, it is difficult to determine 

the significant lags by looking at the ACF 

plot. The alternative way is by examining 

its partial autocorrelation functions 

(PACF), as shown in Figure 7. With a 95% 

confidence interval, we can conclude that 

AR with order 2 is enough to explain the  

autocorrelation in deseasonalized intraday 

PV production. The estimated regression 

parameters,    are reported in Table 2. 

Since the moduli of the autoregressive 

polynomials' roots are outside the unit 

circle, we can conclude that the fitted 

AR(2) is in stationarity condition. 

 

 
Figure 7. PACF of deseasonalized intraday PV production 

 

 

Table 2. Regression parameters of AR(2) processes 

      

1.228 -0.303 

 

The last step is eliminating AR 

components to examine the residuals. We 

show a time series plot of residuals in 

Figure 8 and its ACF in Figure 9. Strict 

positive values in the ACF plot tell us that 

the current random effect is positively 

correlated with its previous values. 

Referring to a 95% confidence interval, we 

can conclude that most ACF values do not 

depend on time. Some values lie outside 

the confidence band, but it can be ignored 

since the autocorrelation values are very 

small (less than 0.08). 
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Figure 8. Time series of residuals 

 

 
Figure 9. ACF of residuals 

 

Before describing an appropriate 

distribution of random behaviour, let us 

briefly summarize the residuals' 

descriptive statistics. The kurtosis is very 

high, approximately 41.18, where the 

skewness is positive at around 3.05. For 

better demonstration, a quantile plot is 

displayed in Figure 10, which shows heavy 

tails on both sides. This gives an idea that 

the residuals are certainly not following 

the normal distribution. Apart from these, 

Kolmogorov-Smirnov (K-S) 0.285 has a p-

value lower than 2.2e-16. This shred of 

evidence supports a stylized fact of 

rejecting the null hypothesis of normality. 

 

 
Figure 10. Quantile plot of residuals 
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Figure 11 compares the normal 

distribution (red curve) and NIG 

distribution (black curve). Looking at the 

plot, we suggest that the residuals follow 

NIG distribution rather well since it 

outperforms the normal distribution. We 

fit the NIG distribution to the residuals by 

maximum likelihood estimation (MLE) 

using nigFit command in R programming. 

The estimated NIG parameters are 

reported in Table 3. 

 

 
Figure 11. NIG distribution of residuals 

 
Table 3: NIG estimated parameters 

        

0.657 0.153 0.0550 0.051 

There are voluminous studies that 

have used NIG distribution, such as fitting 

the residuals of temperature data (Benth 

and  altytė Benth (2005); Benth and Che 

Taib (2013)), quantifying risk in stocks 

market (Bølviken and Benth (2000)), and 

modelling the energy spot pri es  Benth 

and  altytė Benth, 200 , and Benth   

Henriksen, 2011). It is worth mentioning 

that the random components are not very 

well explained, as shown in the quantile 

plot in Figure 10. We leave this for future 

research since it requires a more 

sophisticated model to explain the 

randomness in intraday PV production, 

including the effect between days 

(interday) in the modelling function. 

 

 

5. CONCLUSION 

 

PV power can be produced with the 

sun's presence and it should occur within a 

time interval of sunrise and sunset hour. 

However, the empirical analysis based on 

four years of quarter-hourly PV production 

of Amprion, Germany, shows that the first 

and last production hours are not 

coinciding with the sunrise and sunset at 

the corresponding location. Different total 

sunlight hours over the year leads to 

complexity in modelling the 

inhomogeneous time series. To overcome 

this problem, we came out with a 

modelling approach suggesting an additive 

model of two seasonality functions and a 

stochastic process. We find the locations 

of the first and last productions to mimic 

the original location. The result shows that 

our proposed approach can capture sunrise 

and sunset effects. However, its ability to 

explain the seasonality between the first 

and last productions are rather weak. 

Additionally, we can also explain the time 

dependency in the deseasonalized 

production stochastically with order two's 

autoregressive process. Heavy tails in the 

residuals led the NIG distribution to 

outperform the Gaussian distribution. 
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With these findings, there are some 

limitations observed. First, we managed to 

find locations to mimic the location of 

Amprion. However, the locations obtained 

are too far away from Amprion. We put 

this aside since our main purpose is to find 

the locations that match the first and last 

hour of production. This results in a good 

fit between sunrise-first production as well 

as sunset-last production. Second, our 

proposed deterministic function only 

captures the effect of sunrise and sunset. 

The seasonality between the first and last 

productions is not well explained. This is a 

tremendous and challenging task since we 

require a model that can capture every 

quarter-hour of production, which is very 

sensitive to weather conditions. Despite 

these drawbacks and limitations, we 

emphasize that our model could control the 

effect of sunrise and sunset over the whole 

dataset. 

 

Finally, there are a few suggestions 

for future research. First, one may 

construct a pricing formula of the Quanto 

option. This acts as a hedging strategy for 

non-renewable energy producers against 

high-volume PV production and the low 

electricity price. This paper used a discrete 

autoregressive process to describe the 

short-term random fluctuation in PV 

production. However, to price the 

derivatives, it is more convenient to use 

the continuous-time stochastic process 

called CARMA processes. Many 

applications use CARMA processes in 

energy markets, such as a futures contract 

on electricity spot and temperature futures 

on accumulated temperature, CAT. Thus, 

the CARMA processes might contribute 

well in pricing the Quanto options too. 

Second, to be more useful, one may also 

compute the hedging ratios and measure 

the effectiveness of the strategy's ex-post 

performances. In fact, there are few ways 

to compute the hedging ratios, including 

minimizing the variance and maximizing 

profit from hedging. Thus, one needs to 

specify which types of risk management 

they are in. Lastly, one may also include 

the interday effects in the model. As 

shown in our findings, the quantile plot of 

the residuals still shows extreme heavy 

tails. This gives the idea that some factors 

remain unexplained, where a more 

sophisticated model is required. We 

believe that the intraday PV production is 

influenced by the previous hours and the 

previous days. This is certainly not an easy 

task, but it may overcome the extreme 

behaviour of the residuals. 
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