Thirty-two years of research on information foraging theory: Evolution, key contributions and emerging directions

Main Article Content

Williams Nwagwu

Abstract

This paper examines the evolution and future directions of Information Foraging Theory (IFT) research over the past 32 years (1992–2023). The findings reveal a sustained interest in IFT, with an average of 14 publications per year, culminating in a total of 449 papers authored by 933 researchers. Key contributors such as Peter Pirolli and Margaret Burnett have significantly shaped the field. Initially rooted in cognitive psychology and human-computer interaction (HCI), IFT has since expanded its influence to domains including information science, organizational behaviour, and machine learning. Core concepts of IFT, such as information scent and information patches, have been empirically validated, reinforcing their importance in understanding user behaviour. Publication trends highlight a peak in research activity around 2012, followed by fluctuations and a recent resurgence. The prominence of conference papers reflects the dynamic and rapidly evolving nature of the field. Keyword analysis identifies research clusters focusing on human decision-making, user interfaces, information retrieval, visualization, social networking, and behavioural studies, demonstrating the interdisciplinary application of IFT. Emerging themes such as cognitive load, uncertainty, virtual reality, and big data point to promising new research directions. This overview underscores IFT's significant contributions and ongoing relevance in understanding of human information-seeking behaviour and optimizing systems to meet user needs.

Downloads

Download data is not yet available.

Article Details

How to Cite
Williams Nwagwu. (2024). Thirty-two years of research on information foraging theory: Evolution, key contributions and emerging directions. Malaysian Journal of Library and Information Science, 29(3), 117–143. https://doi.org/10.22452/mjlis.vol29no3.6
Section
Articles

References

Adeli, M., Nelson, N., Chattopadhyay, S., Coffey, H., Henley, A., & Sarma, A. (2020). Supporting code comprehension via annotations: Right information at the right time and place. 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 1–10. https://doi.org/10.1109/VL/HCC50065.2020.9127264.

Arora, I., Bellato, A., Gliga, T., Ropar, D., Kochhar, P., Hollis, C., & Groom, M. (2022). What is the effect of stimulus complexity on attention to repeating and changing information in autism?. Journal of Autism and Developmental Disorders, 52(2), 600–616. https://doi.org/10.1007/s10803-021-04961-6.

Avvisati, F., & Borgonovi, F. (2023). Young videogamers and their approach to science inquiry. Large-scale Assessments in Education, 11, 29. https://doi.org/10.1186/s40536-023-00178-4.

Barack, D. L., Bakkour, A., Shohamy, D., & Salzman, C. D. (2023). Visuospatial information foraging describes search behaviour in learning latent environmental features. Scientific Reports, 13(1), 1126. https://doi.org/10.1038/s41598-023-27662-9.

Bawden, D., & Robinson, L. (2009). The dark side of information: Overload, anxiety and other paradoxes and pathologies. Journal of Information Science, 35(2), 180-191. https://doi.org/10.1177/0165551508095781.

Bell, W. J. (1991). Searching behaviour: The behavioural ecology of finding resources. Chapman & Hall Animal Behavioural Series. Springer.

Bergman, T. J., & Beehner, J. C. (2023). Information ecology: An integrative framework for studying animal behavior. Trends in Ecology & Evolution, 38(11), 1041–1050. https://doi.org/10.1016/j.tree.2023.05.017,

Briggs, S., Chabot, S., Sanders, A., Peveler, M., Strzalkowski, T., & Braasch, J. (2022). Multiuser, multimodal sensemaking cognitive immersive environment with a task-oriented dialog system. 2022 IEEE International Symposium on Technologies for Homeland Security (HST) (pp. 1-3), Boston, MA, USA. 10.1109/HST56032.2022.10025454.

Bryant D. J. (2014). Information foraging theory: A framework for intelligence analysis (DRDC-RDDC-2014-R115). Defence Research and Development Canada (DRDC) - Toronto Research Centre. https://apps.dtic.mil/sti/citations/AD1003600.

Cao, S., Liu, L., & Zhang, W. (2022). Feature extraction of the information clues in the data journalism. 2022 International Conference on Culture-Oriented Science and Technology (CoST), Lanzhou, China, 303–307. https://doi.org/10.1109/CoST57098.2022.00069

Chang, S.-J., & Rice, R. E. (1993). Browsing: A multidimensional framework. Annual Review of Information Science and Technology, 28, 231-276.

Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 129-136. https://doi.org/10.1016/0040-5809(76)90040-X.

Choo, C. W., Detlor, B., & Turnbull, D. (2000). Information seeking on the Web: an integrated model of browsing and searching. First Monday, 5(2). https://doi.org/10.5210/fm.v5i2.729.

Cunningham, S. J., & Connaway, L. S. (1996). Information searching preferences and practices of computer science researchers. In Proceedings of OZCHI '96 (pp. 294–299). ACM. https://doi.org/10.1145/240080.240149.

Czerwinski, M., Larson, K., & Robbins, D. (1998). Designing for navigating personal web information: Retrieval cues. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 42(5), 458-462. https://doi.org/10.1177/154193129804200503

Diwanji, V., Sedhain, A., Bodi, G., & Kuttal, S. K. (2022). Developers’ Foraging Behavior on Stack Overflow. 2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 1-3), Roma, Italy. 10.1109/VL/HCC53370.2022.9833123.

Drias, Y., Drias, H., & Khennak, I. (2022). Enhanced elephant herding optimization for large scale information access on social media. International Journal of Computer Information Systems and Industrial Management Applications, 14, 28-47. https://doi.org/10.48550/arXiv.2406.11916.

Drias, Y., & Pasi, G. (2020). Credible information foraging on social media. In Trends and innovations in information systems and technologies: Volume 1 (pp. 415–425). Springer. https://doi.org/10.1007/978-3-030-45688-7_43.

Fidel, R., Pejtersen, A. M., Cleal, B., & Bruce, H. (2004). A multidimensional approach to the study of human-information interaction: A case study of collaborative information retrieval. Journal of the American Society for Information Science and Technology, 55(11), 939-953. https://doi.org/10.1002/asi.20041.

Fok, R., Lipka, N., Sun, T., and Siu, A. F. (2024). Supporting business document workflows via collection-centric information foraging with large language models. Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI ‘24), Honolulu, HI, USA. https://doi.org/10.1145/3613904.3641969.

Franceschet, M. (2010a). The difference between popularity and prestige in the sciences and in the social sciences: A bibliometric analysis. Journal of Informetrics, 4(1), 55-63.

Franceschet M. (2010b). The role of conference publications in CS. Communications of the ACM, 53(12), 129 – 132. https://doi.org/10.1145/1859204.1859234.

Fu, W.-T., & Pirolli, P. (2007). SNIF-ACT: A cognitive model of user navigation on the World Wide Web. Human-Computer Interaction, 22(4), 355-412. https://doi.org/10.1080/07370020701638806.

Hattersley, M., Brown, G. D. A., Michael, J., & Ludvig, E. A. (2022). Of tinfoil hats and thinking caps: Reasoning is more strongly related to implausible than plausible conspiracy beliefs. Cognition, 218, 104958. https://doi.org/10.1016/j.cognition.2021.104956.

Hutchins, B. I., Baker, K. L., Davis, M. T., Diwersy, M. A., Haque, E., Harriman, R. M., Hoppe, T. A., Leicht, S. A., Meyer, P., & Santangelo, G. M. (2019). The NIH Open Citation Collection: A public access, broad coverage resource. PLoS Biology, 17(10), e3000385. https://doi.org/10.1371/journal.pbio.3000385.

Illingworth, D. A., & Thomas, R. P. (2022). Strength of belief guides information foraging. Psychological Science, 33(3), 450-462. https://doi.org/10.1177/09567976211043425.

Kedrick, K., Schrater, P., & Koutstaal, W. (2023). The multifaceted role of self-generated question asking in curiosity-driven learning. Cognitive Science, 47(4), e13253. https://doi.org/10.1111/cogs.13253.

Krebs, J. R., & Davies, N. B. (1987). An introduction to behavioural ecology (2nd ed.). Blackwell Scientific Publications Sinauer Associates.

Kuznetsov, A., Chang, J. C., Hahn, N., Rachatasumrit, N., Breneisen, B., Coupland, J. & Kittur, A. (2022). Fuse: In-Situ sensemaking support in the browser. UIST ‘22: Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, Article No. 34, 1–15. https://doi.org/10.1145/3526113.3545693.

Liu, J., & Azzopardi, L. (2024). Search under uncertainty: Cognitive biases and heuristics: A tutorial on testing, mitigating, and accounting for cognitive biases in search experiments. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, 3013–3016. Association for Computing Machinery. https://doi.org/10.1145/3626772.3661382.

MacArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100(916), 603-609. http://www.jstor.org/stable/2459298.

Madaio, M., Kapania, S., Qadri, R., Wang, D., Zaldivar, A., Denton, R., & Wilcox, L. (2024). Learning about Responsible AI On-The-Job: Learning Pathways, Orientations, and Aspirations. FAccT 24: Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, 1544-1558. https://doi.org/10.1145/ 3630106.3658988.

Marchionini, G. (1995). Information Seeking in Electronic Environments. Cambridge University Press.

Marchionini, G. (2006). Exploratory Search: From Finding to Understanding. Communications of the ACM, 49(4), 41-46. https://doi.org/10.1145/1121949.1121979.

Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018) Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160-1177. https://doi.org/10.1016/j.joi.2018.09.002.

Naito, A., Katahira, K. & Kameda, T. (2022). Insights about the common generative rule underlying an information foraging task can be facilitated via collective search. Scientific Reports, 12, 8047. https://doi.org/10.1038/s41598-022-12126-3.

Nakayama, S., Richmond, S., Nov, O., & Porfiri, M. (2020). The gold miner's dilemma: Use of information scent in cooperative and competitive information foraging. Computers in Human Behavior, 109, 106352. https://doi.org/10.1016/j.chb.2020.106352.

Nguyen, V. B., Svátek, V., Rabby, G., & Corcho, O. (2020). Ontologies supporting research-related information foraging using knowledge graphs: Literature survey and holistic model mapping. In C. M. Keet & M. Dumontier (Eds.), Knowledge engineering and knowledge management. EKAW 2020. Lecture Notes in Computer Science (Vol. 12387). Springer. https://doi.org/10.1007/978-3-030-61244-3_6.

Pirolli, P. (1998). Exploring browser design trade-offs using a dynamical model of optimal information foraging. CHI ’98: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 33-40. https://doi.org/10.1145/274644.274650.

Pirolli, P. (2007). Information foraging theory: Adaptive interaction with information. Oxford University Press.

Pirolli, P., & Card, S. K. (1999). Information foraging. Psychological Review, 106(4), 643-675. https://doi.org/10.1037/0033-295X.106.4.643.

Pyke, G. H. (1984). Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics, 15, 523-575.

Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. The Quarterly Review of Biology, 52(2), 137-154.

Schotten, M., El Aisati, M., Meester, W. J. N., Steiginga, S., & Ross, C. A. (2017). A brief history of Scopus: The world’s largest abstract and citation database of scientific literature. In Research Analytics: Boosting University Productivity and Competitiveness through Scientometrics (pp. 31-58). CRC Press. https://doi.org/10.1201/9781315155890.

Sedhain, A., Diwanji, V., Soloman, H., Leon, S., & Kuttal, S. K. (2024). Developers’ information seeking in Question & Answer websites through a gender lens. Journal of Computer Languages, 79(4), 101267. https://doi.org/10.1016/j.cola.2024.101267.

Sedhain, A., Ragavan, S. S., McKinney, B., & Kuttal, S. K. (2022, September 12-16). Estimating foraging values and costs in Stack Overflow. 2022 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp.1-4), Roma, Italy,. https://doi.org/10.1109/VL/HCC53370.2022.9833135.

Sih, A. (1987). Prey refuges and predator-prey stability. Theoretical Population Biology, 31(1), 1–12. https://doi.org/10.1016/0040-5809(87)90019-0.

Stephens, D. W., & Krebs, J. R. (1986). Foraging Theory. Princeton University Press.

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293–315. https://doi.org/10.1037/0033-295X.90.4.293.

Valone, T. J. (1992). Information for patch assessment: A field investigation with black-chinned hummingbirds. Behavioral Ecology, 3(3), 211–222. https://doi.org/10.1093/beheco/3.3.211.

Wang, B., & Liu, J. (2024). Understanding users' dynamic perceptions of search gain and cost in sessions: An expectation confirmation model. Journal of the Association for Information Science and Technology, 75(9), 937–956. https://doi.org/10.1002/asi.24935.

Westland, T., Niu, N., Jha, R., Kapp, D., & Kebede, T. (2020). Relating the empirical foundations of attack generation and vulnerability discovery. Proceedings of the IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Cincinnati, OH, USA. https://doi.org/10.1109/IRI49288.2020.00014.

White, R. W., & Horvitz, E. (2009). Experiences with web search on medical concerns and self-diagnosis. AMIA 2009 Symposium Proceedings, 696-700.

Wilson, T. D. (1999). Models in Information Behaviour Research. Journal of Documentation, 55(3), 249-270. https://doi.org/10.1108/EUM0000000007145.

Wu, D., Wang, X., & Ye, H. J. (2024). Transparentizing the “black box” of live streaming: Impacts of live interactivity on viewers’ experience and purchase. IEEE Transactions on Engineering Management, 71, 3820–3831. https://doi.org/10.1109/TEM.2023.3237852

Xiao, L., Lin, X., Mi, C., & Akter, S. (2023). The effect of dynamic information cues on sales performance in live streaming e-commerce: An IFT and ELM perspective. Electronic Commerce Research. https://doi.org/10.1007/s10660-023-09774-6.

Yang, K. & Meho, L. I. (2007). Citation Analysis: A Comparison of Google Scholar, Scopus, and Web of Science. Proceedings of the American Society for Information Science and Technology, 43(1), 1-15. https://doi.org/10.1002/meet.14504301185.

Yen, R., Sultanum, N., & Zhao, J. (2024). To Search or to Gen? Exploring the Synergy between Generative AI and Web Search in Programming. CHI EA ’24: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Article number 327, 1-8. https://doi.org/10.1145/3613905.3650867.