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1. Introduction
The pandemic created significant problems in the business world. 
Most sectors worldwide, including in Indonesia, had to stop their 
operations temporarily to minimise the spread of Covid-19. The 
Central Bureau of Statistics of Indonesia reported that the country’s 
GDP shrank by 5.32% in the second quarter of 2020, 3.49% in the 
third quarter and 2.19% in the last quarter (Bank Indonesia, 2020). 
The Indonesian government rolled out several policies to boost 
its GDP, including easy fiscal and monetary policies to increase 
consumption, investment, government spending, and export, as the 
four components of GDP (Aryusmar, 2020). As a result, many became 
interested in investing with the relaxation of investment policies. The 
Indonesia Stock Exchange (IDX) accounted for 3.88 million investors 
at the end of 2020 (Depository, 2020), and exceeded its annual target 
of 3 million last year. 

Return is one of the factors that motivates investors as a reward 
for their courage in taking risks. Many investors invest in stocks to 
get a high return instantly (Hamka et al., 2020). They should use 
surplus funds after financing their primary need to invest because 
there is a risk of loss. Moreover, investing in stocks needs long 
periods to achieve high returns (Partono et al., 2017). However, 
Indonesia’s Financial Service Authority (2019) showed that financial 
literacy in the country was at 38.03%, which is considered low. 
This is reflected in many using loans and primary-need money for 
investment. In addition, low financial literacy could increase the 
information asymmetry that increases herding behaviour (Din et al., 
2021), that is, investing is the same stocks as others with the hope 
of high returns (Fransiska et al., 2018). Nevertheless, this behaviour 
causes investors to pick the wrong stocks for their portfolio, which 
leads to losses. Therefore, building an investment portfolio is a critical 
issue for investors. 

Generally, investors are risk-averse (Reilly & Brown, 2003). They 
expect high returns with low risk, whereas investment theory states 
that there is a linear relationship between risk and return, i.e., high 
risk, high return (Rui et al., 2018). Hence, risk should be reduced to 
get the desired return with lower risk. A fundamental approach to 
minimising risk is diversification (Lee et al., 2020). Diversification is 
the allocation of a fixed portfolio across different types of securities 
and asset classes that limit exposure to any source of risk (Bodie et 
al., 2014). The optimal portfolio for the most returns with the lowest 
risk is located in the efficient frontier curve (Fama & French, 2004). 
However, creating an optimal portfolio is a challenge, especially 
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for new investors. Investors need to work with a lot of information, 
e.g., historical price, trends and firm performance. They also need 
analytical tools to get the right composition of stocks in their 
portfolio. 

One approach used to obtain an optimal portfolio is modern 
portfolio theory (MPT) or mean-variance analysis. MPT was 
established by Markowitz (1952), and attempts to maximise portfolio 
return for any given risk, or equivalently, minimise risk for any 
given amount of return. Both ways will produce the same result in 
creating an efficient portfolio. The basic concept behind MPT is that 
assets in a portfolio should not be viewed in isolation but should 
be evaluated by how it affects the portfolio’s risk and return on the 
whole (Omisore et al., 2012). MPT seeks to reduce total variance as a 
component of risk of portfolio return by combining different assets 
with returns that are not positively correlated. This theory assumes 
that investors are rational and markets are efficient. 

The Markowitz model provides several risk-return combinations 
which investors can choose from based on their preferences (Putra & 
Dana, 2020; Rigamonti, 2020). However, implementing the Markowitz 
model is very time-consuming, because it requires a lot of estimations 
to fill the covariance matrix. The model does not provide guidelines 
for forecasting the security risk premium, that is important for the 
construction of an efficient frontier of risky assets (Singh & Gautam, 
2014). Sharpe (1963), in trying to simplify the Markowitz model, 
came up with a single-index model that reduces computational 
requirements and data. This model solves the portfolio optimisation 
problem by showing a linear relationship between risk and return—
which is simpler to understand—and considers that the relationship 
between securities occurs only through their individual relationship 
with some indices of business activity. As a result, covariance data 
is reduced from (n2 – n)/2 under the Markowitz model to only n 
measures of each security as it relates to the index (Chitnis, 2010). 
Nevertheless, single-index models may not be the most efficient with 
respect to volatility. 

There are limited studies on comparing the mean-variance and 
single-index models in creating a portfolio. Furthermore, those 
studies show inconsistent results. Ozkan and Cakar (2020) show that 
the mean-variance model performs better in the markets of developed 
countries, while the single-index model performs better in developing 
countries. On the other hand, Chasanah et al. (2017), whose research 
sample is a developing country market, find that optimal portfolio 
formation with the mean-variance model is more dominant than the 
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single-index model. Nyokangi (2016) shows that the choice between 
mean-variance and single-index models depends on the time span 
of study. On the other hand, Yuwono and Ramdhani (2017) find no 
significant return difference between the mean-variance model and 
single-index model. 

Therefore, this paper aims to construct portfolios using the mean-
variance and single-index models, and compare the performance of 
each in the IDX. The sample used in this research are stocks listed in 
the LQ45 index, the most liquid stocks in the IDX. This research is 
expected to give insight to investors—especially new investors—on 
constructing an optimal portfolio. 

2. Literature Review

2.1 Portfolio Theory (Markowitz Theory)
Asset allocation for the sake of diversification in financial markets 
has become an important issue for investors. Investors expect asset 
allocation to give them the highest return with a particular risk, or 
the lowest with a certain expected return. Diversification is a risk 
reduction technique by spreading investment in different securities 
and asset classes (Bodie et al., 2014; Jayeola et al., 2017). In the 
traditional approach of diversification, the greater the number of 
securities invested in portfolio, the lower the risk (Lekovic, 2018). 
Based on the law of large numbers, this theory is supported by 
some its proponents, like Hicks (1935), Williams (1938), and Leavens 
(1945). Nevertheless, portfolio efficiency decreases as the number of 
portfolios increases because it results in excessive diversification. This 
can reduce portfolio risk, but ignores the correlation between returns 
on different assets (Francis & Kim, 2013). 

Simple diversification was rejected by Markowitz (1952), who 
was awarded the Nobel Prize in 1990 for his essay “Portfolio 
Selection” and his book Portfolio Selection: Efficient Diversification 
(1959). He initiated the first quantitative theory of portfolio selection 
and management, currently known as MPT. This is a framework 
to create an investment portfolio based on the maximisation of 
expected returns and the simultaneous minimisation of investment 
risk (Fabozzi et al., 2002; Rodríguez et al., 2021). This theory uses 
return and risk in a coherent framework (Chen & Pan, 2013) and 
considers covariances among the stocks in the portfolio. This model 
is also called the mean-variance (MV) portfolio theory. Return 
is based on historical data while risk is obtained from standard 
deviation of returns. The Markowitz model provides a solution to 
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overcome trade-off problems between risk and return in selecting 
a combination of assets in an optimal portfolio. The investor has a 
choice of either maximising return with any acceptable risk or to 
minimise risk with any acceptable level of return. Both options use 
the same mathematical process. 

Efficient frontier refers to several alternative portfolios that give 
the highest return on certain risks or lowest risk on certain returns 
(Fabozzi et al., 2002; Letho et al., 2022). Nevertheless, not all portfolios 
on the efficient frontier are optimal. An optimal portfolio is located 
on the efficient frontier chosen by investors based on their individual 
preferences shown by utility. Theoretically, an optimal portfolio 
is defined as a tangency point between the efficient frontier and 
the investor’s indifference curve, which presents the utility of the 
investor. A higher indifference curve has larger certainty equivalents 
and larger expected utility (N. Kumar, et al., 2014). 

However, this theory has several limitations. Mean-variance 
portfolios find portfolio weight based on first moment and 
the parametric representation of second moment, assuming 
no predictable time variation. It assumes constant investment 
opportunities, and its static mean-variance solution is myopic and 
does not consider events beyond the present (Jones, 2017). MPT 
also assumes continuous pricing, a world in which markets are free, 
societies are stable, and investors are rational wealth maximisers 
(Curtis, 2004). In fact, this assumption is contradicted by observations 
of investors who get swept up in herd behaviour, whereby the 
investor tries to follow the decisions made by others and undervalues 
information available in the market (Bikhchandani & Sharma, 2000). 
They do not consider risk and return in choosing their portfolio. 
Moreover, these models need complex statistics-based mathematical 
modelling and formulas to support the concept and theoretical 
assumptions (Mangram, 2013). This is problematic when it is used 
to build portfolios from large stock groups, with many estimations 
needed for asset selection.

2.2 Single-index Model
The single-index model (SIM) concept was developed by Sharpe 
in 1963. This model simplifies Markowitz’s mean-variance model 
(Mahmud, 2019) to overcome its complexity. This model is no longer 
based on inter-asset correlation, but instead on the assumption that 
co-movement between stock return is due to movement in market 
returns, or to be more specific, returns of a broad market index, RM 
(Frankfurter et al., 1976; Hadiyoso et al., 2015). The single-index 
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model specifies two sources of uncertainty for return: systematic and 
unique uncertainty. Systematic uncertainty, or beta (β), is uncertainty 
from the market or macroeconomics, while unique uncertainty, alpha 
(α), is uncertainty from the company or industry itself. Hence, a 
single-index model is written as follows:

 

 

i i i MR R ea b= + +  

From the equation, the difference between expected return (ai 
+ biRM) and actual return (Ri) is symbolised by e,, residual return. 
An important concept in the single-index model is β terminology. 
This refers to sensitivity towards market return and is usually 
predicted using historical data (B. R. Kumar & Fernandez, 2019). 
The higher the β, the more sensitive the stock is to market return. 
The basic assumption used in the single-index model is that stocks 
are correlated only if they have the same response toward market 
return. Therefore, the covariance between two stocks only can only 
be calculated based on the similarity of their response toward market 
returns. 

The optimal portfolio of the single-index model is obtained by 
sorting the value of excess return to β (ERB) for each stock from the 
largest to the smallest (Elton et al., 1976). The negative ERB value or 
positive ERB that is caused by negative excess return and negative β 
has to be removed. Those ERB values are compared with the value 
of cut-off point of the shares (C*). C* is the largest value Ci of each 
individual stock. Stocks with larger ERB value compared to the C* 
are included in the optimal portfolio and the weights are calculated, 
while others are taken out. 

3. Methodology

3.1 Database
This research uses daily closing prices of stocks incorporated in 
the LQ45 index, IDX Composite index and Bank Indonesia’s 7-Day 
(Reverse) Repo Rate (7-DRRR), from January 2012 to December 2019. 
LQ45 represents the 45 most liquid companies on the IDX based on 
the following criteria: highest capitalisation, huge transaction value 
and prospects for future growth (Malini, 2019). The annual closing 
price of stocks are gathered from Yahoo Finance, then matched with 
financial statement reports from IDX. The IHSG index is obtained 
from Yahoo Finance, and the risk-free rate date is obtained from Bank 
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Indonesia’s 7-DRRR report. 
A total of 38 companies on the LQ45 index are used as the 

research sample. These are the only firms on the LQ45 index with 
enough information in the examined period. The other seven LQ45 
companies do not have complete data—some issued stocks after 
2012, and some had their stocks suspended, resulting in no trade 
for several days. When those stocks were traded again, the price 
could differ significantly from the last trading period, showing high 
volatility (Garcíaa et al., 2015). These 38 companies comprise various 
sectors, as listed in Appendix 1. 

3.2 Research Procedure
Figure 1 shows the steps of constructing a portfolio using both the 
mean-variance and single-index models and comparing the results.

Figure 1: Research procedure
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3.3 Expected Return and Standard Deviation of Individual Stock 

The expected return of individual stock is the arithmetic mean of daily return during the 

research period (Benniga, 2006) as follows: 
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Where: 

 Rate of return of stock i 

k Number of rate of return data 

 Expected return of stock i 

iR

( )iE R

Data collection 
Daily return of LQ45 stocks, IHSG index and 

BI-7DRR 

Expected return and standard deviation 
Calculating rate of return, expected return and 
standard deviation of each stock as research 

sample and IHSG index 
 

Mean-variance model 
1.  Creating covariance matrix 
2. Calculating expected return and 

standard deviation of several possibility 
of portfolios 

3. Creating efficient frontier by finding 
several portfolio possibilities that give 
maximum return given certain amount 
of risk (standard deviation)  

Single-index model 
1.  Calculating  and  using linear 

regression 
2.  Calculating unsystematic risk, excess 

return to beta (ERB) and Ci 
3. Determining optimal portfolio stock 

candidate and calculating the 
proportion 

4. Calculating expected return and 
standard deviation of optimal portfolio 

Model comparison 
Comparing both optimal portfolios using 

Sharpe ratio 
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(1)

Where:
Ri Rate of return of stock i
k Number of rate of return data
E(Ri)  Expected return of stock i

Variances and standard deviation measure the risk of an 
individual stock. Variance measures the averaged squared difference 
between actual and average return, while standard deviation is the 
square root of variance (Bradford & Miller, 2009). Larger variances 
and standard deviation indicate greater volatility. Variance and 
standard deviation are calculated as follows:

 
 

(2) 

 

2 1

( ( ))
k

i i
i

i

R E R

k
s =

-
=
å

 
(2)

  (3) 
 

2
i is s=   (3)

Where:
 Ri  Rate of return of stock i
 k  Number of rate of return data
 E(Ri) Expected return of stock i

 S 2 Variances of stock i  i

 Si Standard deviation of stock i

3.4 Mean-variance Model

3.4.1 Creating Covariance Matrix 

Covariance measures how returns on two risky assets move in 
tandem (Bodie et al., 2014). If the covariance is positive, two assets 
move together while they vary inversely if the covariance is negative. 
Covariance is calculated as follows: 
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 (4) 
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(4)

Total covariance data = Total covariance data =  (5) 
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Where:
 Ri Rate of return of stock i
  E(Ri) Expected return of stock i
  Rj Rate of return of stock j
  Sij Covariance of stock i and j
 n Number of stocks as sample

The covariance matrix is a tool to calculate the standard deviation 
of a stock portfolio that is used to quantify risk. The format of the 
covariance matrix is as follows:

Covariance matrix = 
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  (6)

3.4.2 Calculating Expected Return and Standard Deviation of Portfolio 

The expected return of portfolio is the weighted average of individual 
stock return (Rachmat & Nugroho, 2013) and can be calculated using 
the following expression. 

 
 (7) 
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(7)

Where:
  Ri Rate of return of stock i
  E(Rp) Expected return on the portfolio
 wi Weight of stock i in the portfolio
 n Number of stocks included in portfolio
  E(Ri)  Expected return of individual stock i

Risk in portfolio management is measured through uncertainty 
of the returns. Correlation, coefficients, weights of each security and 
variance of its stocks are factors influencing portfolio risk (Aliu et al., 
2017). Risk can be divided into two types: systematic risk (market 
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risk or non-diversifiable risk) and unsystematic risk (diversifiable 
risk) (Wagdi & Tarek, 2019). Risk of the portfolio proxied by standard 
deviation can be calculated as follows:
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Where:

  
 Variance of the portfolio 
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3.5 Single-index Model 
3.5.1 Calculating α and β Using Linear Regression 

To find α and β for each stock in single-index model, we regress the 
return of each stock on the market return. The regression equation 
is as follows:

  (14) 

 

i i i MR R ea b= + +  (14)

Where:
 Ri Return of a stock
 RM Market return
 αi Individual stock’s alpha (intercept), part of return that is not 
  affected by market
 βi Individual stock’s beta (slope), part of return that is affected 
  by market
 e Residual

3.5.2 Calculating Unsystematic Risk, Excess Return to Beta (ERB) and Ci

Unsystematic risk is risk specific to individual company (firm-specific 
risk) (Masry & Menshawy, 2017). There are two methods to calculate 
unsystematic risk: direct and indirect. Using the direct method, 
unsystematic risk uses residuals of a factor model, such as CAPM 
and the Fama and French (1993) model. Using the indirect method, 
unsystematic risk can be calculated using the following formula:

Unsystematic risk = Total risk – systematic risk (15)

  (16) 
 

2 2 2 2( )i i i Mes s b s= -   (16)

Where:

   (16) 
 

2 2 2 2( )i i i Mes s b s= - Unsystematic risk of stock i

   (16) 
 

2 2 2 2( )i i i Mes s b s= - Variances (total risk) of stock i

   Beta square of stock i 

 

2
ib  Beta square of stock i

   Variances of market index 

 

2
Ms  Variances of market index

Excess return is the difference between stock return and the risk-
free rate. In this case, the risk-free rate is 7-DRRR. Excess return to 
beta (ERB) measures the relative premium return of a stock toward 
unit risk that could not be diversified. ERB is calculated as follows: 
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Where:
  E(Ri) Expected return of stock i
  Rf Risk-free rate
  bi Beta of stock i
 ERBi Excess return to beta of stock i

To determine which stocks are included in a portfolio, the 
cut-off point (C*) has to be determined. The cut-off point value is 
obtained from the highest amount of Ci of each individual stock. Ci 
is calculated as follows:
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 Variances of market
  E(Ri) Expected return of stock i
  Rf Risk-free rate
  bi Beta of stock i
  S2(ei) Unsystematic risk of stock i

3.5.3 Determining Optimal Portfolio Stock Candidate and Calculating 
Proportion

The prerequisite of a stock included into an optimal portfolio is that 
its ERB value is higher than C* which can be written as follows:

  (19) 
 

*iERB C>  (19)

Among all stocks that fulfil criteria (19), we have to calculate 
z-value to determine the stock weight in the optimal portfolio. The 
formula to calculate z-value with no short position available is as 
follows:
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Where:
 wi Weight of stock i in optimal portfolio
  Zi S-value of stock i
 n Number of stocks that meet criteria (19)
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Where:
  E(Rp) Expected return of portfolio

  ap Portfolio alpha that is obtained from 
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 E(RM) Expected market return

Portfolio risks consist of systematic risk and unsystematic risk. 
Therefore, total portfolio variance is the sum of systematic and 
unsystematic risk. 

 Portfolio risk = Systematic risk + Unsystematic risk (23)
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Where:
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3.6 Model Comparison
Two optimal portfolios, using the mean-variance and single-index 
models, with the same expected returns are compared using the 
Sharpe ratio. The Sharpe ratio is commonly used to measure portfolio 
performance (Zakamulin, 2008). This ratio is computed as the excess 
return relative to the risk-free rate divided by risk adjustment by 
using asset return volatility (Gatfaoui, 2009). The higher the Sharpe 
ratio is, the better performing the portfolio is. 
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Where:
  E(Rp) expected return of portfolio
  RF risk-free rate
  Sp standard deviation of portfolio

Suppose the Sharpe ratio of mean-variance model is higher 
than single-index model. In that case, it is concluded that the mean-
variance model dominates the Indonesian stock market more so 
than the single-index model. On the contrary, if the Sharpe ratio of 
the single-index model is higher than the mean-variance model, it 
dominates the IDX more than the mean-variance model.
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4. Results

4.1 Expected Return and Standard Deviation 

Table 1: Expected return, variances and standard deviation of individual 
stock and market

Securities Expected return (%) Variances (%) Standard deviation (%)
ACES 0.098 0.064 25.343
ADRO 0.034 0.081 28.504
AKRA 0.041 0.053 23.123
ANTM 0.003 0.072 26.746

ASII 0.016 0.039 19.698
BBCA 0.085 0.022 14.739
BBNI 0.056 0.038 19.570
BBRI 0.080 0.039 19.665
BBTN 0.056 0.054 23.292
BMRI 0.062 0.038 19.426
BSDE 0.044 0.059 24.361
CPIN 0.101 0.084 29.049
CTRA 0.076 0.084 28.952
ERAA 0.089 0.117 34.250
EXCL 0.019 0.075 27.388

GGRM 0.013 0.043 20.687
ICBP 0.067 0.047 21.753
INCO 0.051 0.093 30.447
INDF 0.046 0.036 18.955
INKP 0.146 0.102 31.967
INTP 0.034 0.057 23.839
ITMG -0.029 0.069 26.361
JPFA 0.081 0.088 29.617
JSMR 0.031 0.036 19.063
KLBF 0.064 0.039 19.739

MEDC 0.074 0.099 31.492
MNCN 0.055 0.087 29.452
PGAS 0.018 0.069 26.205
PTBA 0.022 0.073 27.011
PTPP 0.100 0.075 27.431

PWON 0.093 0.072 26.810
SMGR 0.031 0.052 22.907
SMRA 0.065 0.081 28.459
TBIG 0.075 0.052 22.701

TLKM 0.069 0.031 17.606
UNTR 0.019 0.057 23.817
UNVR 0.061 0.036 18.924
WIKA 1.023 18.480 429.887

Market Index 0.031 0.009 9.502
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The first step to determine optimal portfolio using mean-variance 
and single models is calculating expected returns, variance and 
standard deviation of each stock. Table 1 presents daily expected 
return, standard deviation and variances of 38 LQ45 stocks and the 
IDX Composite. 

Table 1 shows that 37 stocks have positive expected return, while 
one stock, ITMG, has negative expected return. The five shares with 
the highest expected return are WIKA with 1.02% returns, INKP with 
0.15%, and CPIN, PTPP and ACES with 0.10. Meanwhile, stocks with 
higher risk, shown by the higher variances, are WIKA with 18.48% 
variance, ERAA with 0.12%, INKP and MEDC with 0.10%, and INCO, 
JPFA and MNCN with 0.09%. 

Aside from that, the IDX Composite, as Indonesia’s market index, 
shows a daily return 0.031%, a variance of 0.009% and standard 
deviation of 0.950%. The risk-free rate, calculated from the average 
of 7-DRRR during the research period, is 6.02% per year. Since this 
research uses daily return, the annual risk-free rate is divided by 241, 
the average number of days in a year for the research period. Hence, 
the risk-free rate used is 0.025%. 

4.2 Mean-variance Model 
As the number of stocks analysed is 38 stocks, the number of 

covariance data that has to be calculated is  
238 38 703
2
- =  data. 

Based on these covariance data, the maximum return portfolio at any 
given desired risk level can be calculated. Table 2 shows 18 portfolio 
compositions along the efficient frontier line. 18 portfolios are 
generated using 38 available stocks and changing their weightings. 

Portfolio 1 is the minimum-variance portfolio. This expected 
daily return of this portfolio is 0.056%, the variance is 0.856% and the 
standard deviation is 9.253%, with 26 stocks. BBCA has the highest 
proportion (18.99%) in this minimum-variance portfolio, as it is the 
least risky among the 38 stocks selected. The highest return per unit 
risk is shown by Portfolio 15. Its return to risk ratio is 0.99892, which 
means 0.99892% return obtained for every 1% risk borne. 

As shown in Table 2, as the return is expected to increase, the 
number of stocks used to create portfolios with the lowest standard 
deviation decreases. To create portfolios 1 to 8, more than 20 stocks 
are selected. To create portfolios 9 to 13, between 10 and 20 stocks are 
selected, while for portfolio 14 to 18, less than 10 stocks are selected. 
This result has the same characteristics with a previous study 
conducted by Garcíaa et al. (2015). ACES, BBCA, INKP and WIKA are 
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the four only stocks that are always selected in 18 efficient portfolios. 
Investors can choose portfolios located in the efficient frontier 

because they are the best portfolios of all possible combinations 
(Halicki & Uphaus, 2014). Figure 2 shows the efficient frontier 
line using the 18 points in Table 2. Individual preferences and 
risk tolerance affect investment decisions (Lan et al., 2018). Those 
preferences are shown by the utility curve. The intersection between 
the utility curve and efficient frontier is the portfolio combination 
chosen by the investor. 

Figure 2: Efficient frontier
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4.3  Single-index Model 
The initial step to determine optimal portfolio using single-index 
model is calculating α and β using regression Equation 14. Using the 
result of α and β, unsystematic risk and excess return to beta (ERB) 
can be found by consecutively using Equations 16 and 17. Table 3 
shows α, β, unsystematic risk and ERB of each 38 individual stocks. 

Alpha shows unique stock return that is not affected by market 
return. The highest α is owned by WIKA, which is 0.01. β shows 
sensitivity of the stock toward market return. Positive β means an 
increase in market return will result in an increase in stock return. 
Meanwhile, a negative β means an increase in market return will 
result in a decrease in stock return. SMRA has the highest beta, 
0.9131. This means when market return increases for 1%, SMRA’s 
return will increase 0.9131%. Of 38 stocks analysed, only ASII has 
negative β during the research period. It means when market return 
increases, ASII return will decrease. 

Unsystematic risk is risk that is related to particular stock or 
security. From Table 3, WIKA has the highest unsystematic risk of 
0.1848. BBCA is stock that has the lowest unsystematic risk. This 
shows that most of its risk is affected by the market and it is good 
sign for the investor to invest in this company. ERB is the comparison 
between excess return and β. The highest ERB of these 38 stocks is 
CPIN, at 0.3819. Stocks that have negative or positive ERB due to 
negative excess return and negative beta have to be taken out from 
the list because they are ineligible for the establishment of an optimal 
portfolio. Of 38 stocks, eight stocks have to be taken out. The seven 
stocks with negative ERB are PTBA, UNTR, PGAS, GGRM, ITMG, 
ANTM and EXCL, while the one stock with positive ERB, negative β 
and negative excess return is ASII. 
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Table 3: Alpha, beta, unsystematic risk and ERB of 38 individual stocks

Stocks Alpha (α) Beta (β) Unsystematic risk 
(σ(e))

Excess return to 
beta (ERB)

ACES 0.0010 0.0050 0.0006 0.1466
ADRO 0.0003 0.0210 0.0008 0.0042
AKRA 0.0004 0.1146 0.0005 0.0014
ANTM 0.0000 0.0391 0.0007 -0.0055
ASII 0.0002 -0.0391 0.0004 0.0023
BBCA 0.0008 0.0252 0.0002 0.0238
BBNI 0.0005 0.0749 0.0004 0.0042
BBRI 0.0008 0.0949 0.0004 0.0058
BBTN 0.0005 0.0845 0.0005 0.0037
BMRI 0.0006 0.0570 0.0004 0.0065
BSDE 0.0004 0.0593 0.0006 0.0032
CPIN 0.0010 0.0020 0.0008 0.3819
CTRA 0.0007 0.0645 0.0008 0.0079
ERAA 0.0008 0.3275 0.0012 0.0019
EXCL 0.0002 0.0008 0.0008 -0.0768
GGRM 0.0000 0.5046 0.0004 -0.0002
ICBP 0.0005 0.4652 0.0005 0.0009
INCO 0.0003 0.5495 0.0009 0.0005
INDF 0.0003 0.5963 0.0003 0.0004
INKP 0.0013 0.5581 0.0010 0.0022
INTP 0.0001 0.8258 0.0005 0.0001
ITMG -0.0004 0.3980 0.0007 -0.0014
JPFA 0.0006 0.6384 0.0008 0.0009
JSMR 0.0002 0.4752 0.0003 0.0001
KLBF 0.0005 0.5754 0.0004 0.0007
MEDC 0.0006 0.4025 0.0010 0.0012
MNCN 0.0003 0.8311 0.0008 0.0004
PGAS 0.0000 0.6132 0.0007 -0.0001
PTBA 0.0001 0.4816 0.0007 -0.0001
PTPP 0.0008 0.8098 0.0007 0.0009
PWON 0.0007 0.7888 0.0007 0.0009
SMGR 0.0001 0.7712 0.0005 0.0001
SMRA 0.0004 0.9131 0.0007 0.0004
TBIG 0.0007 0.3296 0.0005 0.0015
TLKM 0.0005 0.5168 0.0003 0.0009
UNTR 0.0000 0.5866 0.0005 -0.0001
UNVR 0.0004 0.6422 0.0003 0.0006
WIKA 0.0100 0.6309 0.1848 0.0158
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The next step is calculating Ci of the remaining 30 stocks using 
Equation 18. Table 4 shows ERB, Ci and C* for the remaining 30 
stocks that fulfil the criteria. C* is the highest value of individual Ci. 
From the table, the value of C* is 0.00007, the value of Ci of PTPP, 
PWON and TLKM. A stock will be selected into optimal portfolio 
when its ERB value is higher than C*. Based on its ERB value, all 30 
stocks meet that requirement, so those 30 stocks will be included in 
optimal portfolio. 

Table 4: ERB, Ci and ERB to C* of 30 stocks

Stocks ERB Ci ERB to C* Remarks
ACES 0.14662 0.00000 ERB > C* Portfolio candidate
ADRO 0.00423 0.00000 ERB > C* Portfolio candidate
AKRA 0.00136 0.00000 ERB > C* Portfolio candidate
BBCA 0.02383 0.00001 ERB > C* Portfolio candidate
BBNI 0.00419 0.00001 ERB > C* Portfolio candidate
BBRI 0.00582 0.00001 ERB > C* Portfolio candidate
BBTN 0.00368 0.00000 ERB > C* Portfolio candidate
BMRI 0.00646 0.00001 ERB > C* Portfolio candidate
BSDE 0.00320 0.00000 ERB > C* Portfolio candidate
CPIN 0.38185 0.00000 ERB > C* Portfolio candidate
CTRA 0.00787 0.00000 ERB > C* Portfolio candidate
ERAA 0.00194 0.00002 ERB > C* Portfolio candidate
ICBP 0.00091 0.00004 ERB > C* Portfolio candidate
INCO 0.00047 0.00001 ERB > C* Portfolio candidate
INDF 0.00035 0.00003 ERB > C* Portfolio candidate
INKP 0.00217 0.00006 ERB > C* Portfolio candidate
INTP 0.00011 0.00001 ERB > C* Portfolio candidate
JPFA 0.00088 0.00004 ERB > C* Portfolio candidate
JSMR 0.00013 0.00001 ERB > C* Portfolio candidate
KLBF 0.00068 0.00005 ERB > C* Portfolio candidate

MEDC 0.00122 0.00002 ERB > C* Portfolio candidate
MNCN 0.00036 0.00003 ERB > C* Portfolio candidate
PTPP 0.00093 0.00007 ERB > C* Portfolio candidate

PWON 0.00087 0.00007 ERB > C* Portfolio candidate
SMGR 0.00007 0.00001 ERB > C* Portfolio candidate
SMRA 0.00043 0.00004 ERB > C* Portfolio candidate
TBIG 0.00153 0.00003 ERB > C* Portfolio candidate

TLKM 0.00086 0.00007 ERB > C* Portfolio candidate
UNVR 0.00056 0.00006 ERB > C* Portfolio candidate
WIKA 0.01582 0.00000 ERB > C* Portfolio candidate

Maximum value (C*)  0.00007  
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Sharpe’s single-index model not only identifies stocks that 
construct the portfolio, but also recommend the proportion of 
funds to be invested for each stock to reduce unsystematic risk and 
construct a highly diversified portfolio. Therefore, after finding stocks 
in an optimal portfolio, the weight of those stocks can be found by 
calculating the z-value by using Equation 20. The proportion of 
z-value of each individual stock compared to total z-value is the 
weight of the stock in the portfolio. Table 5 presents z-value and 
weight of each stock in the portfolio. Five stocks with the highest 
proportion in the single-index model portfolio are BBCA (12.860%), 
TLKM (6.641%), BBRI (6.590%), INKP (5.488%) and ACES (5.325%). 

Table 5: Z-value and weight of 30 individual stocks in portfolio

Stocks z-value Weight (%)
ACES 1.142 5.325
ADRO 0.107 0.501
AKRA 0.276 1.287
BBCA 2.758 12.860
BBNI 0.807 3.763
BBRI 1.413 6.590
BBTN 0.563 2.624
BMRI 0.966 4.504
BSDE 0.313 1.458
CPIN 0.899 4.190
CTRA 0.600 2.797
ERAA 0.526 2.455
ICBP 0.856 3.993
INCO 0.244 1.138
INDF 0.505 2.357
INKP 1.177 5.488
INTP 0.066 0.308
JPFA 0.615 2.866
JSMR 0.073 0.342
KLBF 0.965 4.501

MEDC 0.472 2.200
MNCN 0.298 1.391
PTPP 1.000 4.662

PWON 0.943 4.399
SMGR 0.001 0.003
SMRA 0.448 2.091
TBIG 0.951 4.437

TLKM 1.424 6.641
UNVR 0.983 4.582
WIKA 0.054 0.251
Total 21.445 100.00
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The last step is calculating expected return and standard 
deviation of portfolio that consists of 30 stocks whose weight has 
been determined. Before that, α, β and unsystematic risk for the 
portfolio have to be calculated. The α of the portfolio is the weighted 
average of individual stock α, and so too for β and unsystematic risk. 
Table 6 provides us the α, β and unsystematic risk of the portfolio. 

Table 6: Alpha, beta and unsystematic risk of portfolio

α portfolio β portfolio σ (e) portfolio
0.000709 0.339544 0.001

The expected return of the portfolio is calculated using the single-
index model regression equation. 
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4.4 Discussion
The mean-variance and single-index models result in portfolios that 
are optimal in their own way. The mean-variance model is more 
complicated than the single-index model. This section presents the 
performance comparison between the mean-variance and single-
index model in the IDX. Both models are compared using the Sharpe 
ratio. The previous section shows that the expected return of portfolio 
using the single-index model is 0.081%, with a standard deviation of 
3.162%. Referring to Table 2, mean-variance portfolio 7 has the same 
expected return of 0.081% with a standard deviation of 9.545%. In this 
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case, with the same expected return, the standard deviation of the 
single-index model portfolio is lower than the mean-variance model 
portfolio. Table 7 presents a comparison of the five highest stocks, 
standard deviation and Sharpe ratio between the two models with 
the same expected return, 0.081%. 

BBCA stock has the highest proportion in both models, with more 
than 20%. TLKM and ACES are in the top five stocks for both models. 
The Sharpe ratio calculated using Equation 24 with a 0.025% risk-free 
rate shows that the single-index model portfolio with a 1.77% ratio 
dominates the mean-variance model with 0.59%. 

The study shows that the single-index model dominates the 
mean-variance model in creating the optimal portfolio. This finding 
is consistent with the findings of Ozkan and Cakar (2020), who state 
that the single-index model performs better in developing markets. 
This may happen because developing markets are more volatile than 
developed markets (Darby et al., 2019), and because the single-index 
model considers all aspects of the economy that avoid portfolio losses 
(Chanifah et al., 2020). 

Table 7: Comparison between single-index model and mean-variance model

Component Single-index Model Mean-variance Model

Five highest stock composition BBCA (12.860%) BBCA (27.56%)

TLKM (6.641%) TBIG (9.49%)

BBRI (6.590%) TLKM (8.93%)

INKP (5.488%) UNVR (7.76%)

ACES (5.325%) ACES (7.24%)

Expected return 0.081% 0.081%

Standard deviation 3.162% 9.545%

Sharpe ratio 1.77% 0.59%

5. Conclusion
This research highlights the difficulties faced by new investors in 
creating optimal portfolios. Two well-known portfolio models that 
can be used are mean-variance and single-index. Both models offer 
investors the ability to create portfolios with maximum return on any 
desired level of risk, or minimum risk with any desired of level of 
return. However, the mean-variance model is more complex because 
it has a larger number of covariance data to process. In addition, this 
research shows that the single-index model dominates the Indonesian 
stock market compared to the mean-variance model.
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With the same expected return, 0.081%, the single-index model 
provides a lower standard deviation of 3.162% compared to the 
mean-variance model, with 9.545%. This means the single-index 
model has a higher Sharpe ratio as a performance evaluation than 
the mean-variance model. The optimal portfolio using the single-
index model consists of 30 stocks. Those stocks, sorted by proportion 
in portfolio, are BBCA, TLKM, BBRI, INKP, ACES, PTPP, UNVR, 
BMRI, KLBF, TBIG, PWON, CPIN, ICBP, BBNI, JPFA, CTRA, BBTN, 
ERAA, INDF, MEDC, SMRA, BSDE, MNCN, AKRA, INCO, ADRO, 
JSMR, INTP, WIKA and SMGR. BBCA is the stock with the highest 
proportion in the portfolio for both single-index and mean-variance 
models. 

Based on our findings, several implications can be stated. The 
findings could help investors arrange optimal portfolios that benefit 
them. They can allocate their money to invest in several combination 
of stocks that maximise returns with a certain risk. The findings also 
expand previous portfolio literature with respect to the application 
of the single-index and mean-variance models in the Indonesian 
stock market. However, this study does not differ between risk 
preferences—i.e., risk averse, risk moderate and risk taker—and 
further research should be carried out to analyse optimal portfolios 
for each risk preference. Furthermore, further research can use other 
indices besides LQ45 and compare the results of daily, weekly or 
monthly closing data.
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