
Malaysian Journal of Computer Science, Vol. 13 No. 2, December 2000, pp. 33-38

33

A TWO-KEY ACCESS CONTROL SCHEME BASED ON BINARY ACCESS MODE

Md. Rafiqul Islam
Assistant Professor, Computer Science and Engineering

Discipline
Khulna University, Khulna – 9208

Bangladesh

Harihodin Selamat and Mohd. Noor Md. Sap
Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia, Jalan Semarak
54100 Kuala Lumpur, Malaysia.

Tel: 6-03-2904957
Fax: 6-03-2930933

email: mmcc0004@utmkl.utm.my

ABSTRACT

A two-key access control scheme is proposed for implementing the
access control matrix. The proposed scheme is based on binary
form of access rights and time stamp concept. In this scheme each
user is assigned one key and each file is also assigned one key.
The key of a user or file can be used to derive the access rights to
the files depending on the value of time stamp number. The scheme
achieves full dynamism. That means, it can easily handle the
dynamic access control problem, such as changing access right,
adding a user or file and deleting a user or file.

Keywords: Access right, Dynamic access and Two-key

1.0 INTRODUCTION

Data protection is a very important issue in a computer system,
because of the increasing complexity of various sorts of
information, the large number of users, and the widely used
communication networks. The access control system can be used
to prevent the information stored in a computer from being
destroyed, altered, disclosed or copied by unauthorized users.
The access matrix is a conceptual model [3, 7] that specifies the
rights that each user possesses for each file. There is a row in this
matrix for each user, and a column for each file. Each cell of the
matrix specifies the access authorized for the user in the row to the
file in the column. The task of access control is to ensure that
only those operations authorized by the access matrix actually get
executed. An example of an access matrix is shown in Fig. 1.1.
We assume that all access rights are expressed by numerals. Linear
hierarchy

of access privileges may be applied here. That means, the right to
read implies the right to execute, the right to write implies the
rights to read and execute and so on. In the access matrix shown
below user U1 can delete file F1 and execute file F2 and U3 can read
file F3.

Based on the concept of access control matrix, in 1991 Jan et al.
proposed two-key-lock access control system to achieve full
dynamism [6]. That means when a user or file is added to system,
construction of one key-lock is sufficient. On the other hand
when a user or file is deleted from the system, deletion of the key-
lock is enough for necessary update. After that Hwang et al.
proposed another two-key-lock system using time stamp concept
[9]. Jan et al.’s scheme suffers problem to maintain full dynamism
that is shown in Hwang et al.’s paper. In this paper we proposed
a two-key system based on binary access mode and time stamp.
The proposed scheme is simple and achieves full dynamism in the
sense that performing one addition, deletion or updating needs
only modify one key. Since we have got time stamping concept
from Hwang et al.'’ paper, we review their method in the next
section.

2.0 ACCESS CONTROL SCHEME BASED ON

CHINESE REMAINDER THEOREM AND TIME
STAMP CONCEPT

In this section we briefly review Hwang et al.’s two-key-lock
access control scheme based on Chinese remainder theorem [9].
The scheme consists of two tables, one user key-lock table and
one file key-lock table. The user (file) key-lock table has three
columns: key value column, lock value column and time stamp
column. When a user is added to the system, the system assigns
the distinct time

 Files
Users

F1 F2 F3 F4

 U1 4 4 0 1
 U2 2 1 3 0
 U3 1 1 2 1
 U4 2 1 0 4

 Fig. 1.1: An access control matrix

0: No access
1: Execute
2: Read
3: Write
4: Delete

Islam, Selamat and Md. Sap

34

stamp number to the user and select a prime number as lock of the
user. The key value of the user Ui (ith user) is computed as
follows:

 i ij
j

n
j jK r G b=

=
∑

1
mod P (2.1)

Where, P j
j

n
P=

=
∏

1
 (product of all file lock values),

 Gj = P / Pj and n is the total number of files in the
system.

That means, there will be n such Gj’s. Here bj satisfies Gjbj mod Pj

= 1. So, bj = [inv(Gj, Pj)] mod Pj. To find out inv(Qj, Pj) the
extended Euclid’s algorithm is required [1, 2]. Access right is
computed as
 rij = Ki mod Pj (2.2)

When a file is added to the system its key value is similarly
computed using user lock values. Let us see the construction
process of the user and file key-lock tables. For this we consider
the access matrix of Fig. 1.1. Suppose users and files are added to
the system in the sequence U1, F1, F2, U2, F3, U3, F4. Let TUi is
the time stamp of user Ui and TFj is the time stamp of file Fj. In
Table 2.1 Ki is the key, and Li is the lock of the user Ui

respectively. In Table 2.2 Qj is the key and Pj is the lock of file Fj

respectively. The lock values are relatively pairwise prime
numbers.

Table 2.1: The user key -lock table

User Ki Li TUi

U1 Null 5 0
U2 7 6 3
U3 1 7 4
U4 7 11 6

Table 2.2: The file key-lock table

File Qj Pj TFj

F1 4 5 1
F2 4 6 2
F3 135 7 5
F4 246 11 7

2.2 Checking Access Right

To check the access right of user Ui to file Fj, first the time stamp
values TUi and TFj of the user and the file is compared. If the time
stamp value of the user is smaller than that of the file, i.e. user Ui
is added to the system before file Fj, the system uses the lock of
the user and the key of the file to verify the access right of the user
to the file. If the time stamp value of the user is greater than that
of the file, i.e. user Ui is added to the system after file Fj, the

system uses the key of the user and the lock of the file to verify
the access right of the user to the file.

Example 2.1: Verification of access right
If U3 wants to execute the file F4, the system fetches the time
stamp TU3 and TF4 from the user and file key -lock tables, since
TU3 = 4 < TF4 = 7

r34 = Q4 mod L3 = 246 mod 7 = 1.

Since r34 = 1 is equal to the requested access right 1 (execute), the
access request is accepted. On the other hand if U4 wishes to
write in file F1, the system compare TU4 and TF1, since TU4 = 6 >
TF1 = 1, so r41 = K4 mod P1 = 7 mod 5 = 2

Since r41 = 2 is smaller than the requested access right 3 (write),
the access request is denied.

In this scheme the key construction process is time consuming due
to Gj and bj. Since when the system contains large number of files
and users, the computations of the above terms are time
consuming. We can see the result of time consummation of such
computations in [12]. The size of Ki is proportional to n (number
of files in the system) and Qj is proportional to m (number of
users in the system). That means, the Ki and Qj are very large
numbers. On the other hand Pj and Li are relatively small numbers
with respect to Ki and Qj. Hence verification of access right will
be not fast enough, when the system contains large number of
users and files. Since Ki and Qj are very large numbers, the system
suffers overflow problem. Using the concept of time stamping we
proposed a simple two-key access control scheme based on the
binary coding of the access modes (rights). The key construction
process of the scheme is simple and verification of access right is
easy. On the other hand the system achieves full dynamism. We
introduce the proposed scheme in the next section

3.0 TWO -KEY METHOD BASED ON BINARY ACCESS

MODE

In this section we will describe the proposed method with respect
to the key construction process, checking access right and dynamic
access control, such as changing access right, adding a user or file
and deleting a user or file.

3.1 Basic Concept

Let each access right rij in access matrix be represented in its binary
form ij ij

c
ij
c

ijr r r r= −(.. .)1 1 where, c = 1 + log (rmax) and rmax is

the maximum of access rights (rmax = 4 according to Fig. 1.1).
Suppose there are m users and n files in the system. The system
consists of two tables, user key table and one file key table. The
user key table contains two columns: key value column and time
stamp column. Similarly the file key table has two columns: key
value column (key of the file) and time stamp column. The key
value of a user is computed from access rights of the user to the
files and the key value of a file is computed from the access rights

A Two-Key Access Control Scheme Based on Binary Access Mode

35

of the users to the file (the file for which the key value is
computed). Suppose Ki denotes the key of user Ui and the key is

represented as ()i i
c

i
c

iK K K K= −, , . . . ,1 1 , i.e., each key is

broken into c elements. When user Ui is added to the system each
element of the key Ki is computed as follows:

 i
z

ij
z j

j

n
K r=

=
∑ .2

1
 for z =1, 2, . . ., c . (3.1)

where ij
zr denotes the zth bit of rij and ij

zr ∈ {0, 1}.

Suppose c = 3, then we can compute the elements of the key Ki

(the key of the user Ui) as follows:

i ij
j

j

n
K r1 1

1
2=

=
∑ .

 i ij
j

j

n
K r2 2

1
2=

=
∑ . (3.2)

 i ij
j

j

n
K r3 3

1
2=

=
∑ .

where, ijr 1 denotes first bit of the access right rij.

Similarly when a file is added to the system, we compute an
element Qj, the key of the file Fj as follows:

 j
z

ij
z i

i

m
Q r=

=
∑ .2

1
 for z =1, 2, . . ., c . (3.3)

3.2 Construction Process of the Key Tables

Let us consider the following access control matrix of Fig. 3.1.

 Files
Users

F1 F2 F3 F4

 U1 1 2 0 4

 U2 2 3 3 1

 U3 0 4 1 3

Fig. 3.1: An access control matrix

 Files
Users

F1 F2 F3 F4

 U1 001 010 000 100

 U2 010 011 011 001

 U3 000 100 001 011

Fig. 3.2: A binary access control matrix

By considering the above access control matrix and using binary
form of the access rights, we get a binary access control matrix as
shown in Fig. 3.2. Let users and files be added to the system in
the sequence U1, F1, F2, U2, U3, F3, F4. Suppose TUi is the time
stamp of user Ui and TFj is the time stamp of file Fj. Using
corresponding access rights depicted in Fig. 3.2 we can compute
the keys of the users (files) and their time stamps as follows:

TU1 = 0; K
1

1 = 0 , K
2

1 = 0

, K

3

1 = 0; K1 = (K
3

1, K
2

1, K
1

1) = (0,

0, 0).

TF1 = 1; Q
1

1 = 2
1
= 2, Q

2

1 = 0, Q
3

1 = 0; Q1 = (Q
3

1, Q
2

1,Q
1

1) =
(0, 0, 2).

TF2 = 2; Q
1

2 = 0, Q
2

2 = 2
1
= 2, Q

3

2 = 0; Q2 = (Q
3

2, Q
2

2, Q
1

2) =

(0, 2, 0).

TU2 = 3; K
1

2 = 2
2

= 4, K
2

2 = 2
1
 + 2

2
 = 6

, K

3

2 = 0; K2 = (K
3

2,

K
2

2, K
1

2) = (0, 6, 4).

TU3 = 4; K
1

3 = 0, K
2

3 = 0, K
3

3 = 2
2
 = 4; K3 = (K

3

3, K
2

3, K
1

3) =
(4, 0, 0).

TF3 = 5; Q
1

3 = 2
2
+ 2

3
 = 12, Q

2

3 = 2
2
 = 4

, Q

3

3 = 0; Q3 = (Q
3

3,

Q
2

3, Q
1

3) = (0, 4, 12).

TF4 = 6; Q
1

4 = 2
2
 + 2

3
 = 12, Q

2

4 = 2
3
 = 8

, Q

3

4 = 2
1
 = 2; Q4

= (Q
3

4, Q
2

4, Q
1

4) = (2, 8, 12).

Table 3.1: The user key table

User Ki TUi

U1 (0, 0, 0) 0

U2 (0, 6, 4) 3

U3 (4, 0, 0) 4

Table 3.2: The file key table

User Qj TFj

F1 (0, 0, 2) 1

F2 (0, 2, 0) 2

F3 (0, 4, 12) 5

F4 (2, 8, 12) 6

Islam, Selamat and Md. Sap

36

3.3 Checking Access Right

To check the access right of user Ui to file Fj, we first compare the
time stamp values TUi and TFj of the user and the file. If the time
stamp value of the user is larger than that of the file, i.e. user Ui is
added to the system after file Fj, we use the key of the user to
verify the access right of the user to the file. If the time stamp
value of the user is smaller than that of the file, i.e. user Ui is added
to the system before file Fj, we use the key of the file to verify the
access right of the user to the file. The algorithm 3.1 for checking
access right of a user to a file is given below:

Algorithm 3.1: Checking access right

Steps:
1. Input Ui, Fj and aij (the request access mode);
2. If TUi > TFj then

Begin
 For 1 ≤ z ≤ c do

 Compute ij
z i

z

j
r

K=

2

2mod ;

 End;
Else
 Begin
 For 1 ≤ z ≤ c do

 Compute ij
z i

z

i
r

Q
=

2

2mod ;

End;
3. If aij ≤ rij then

Access is allowed;
Else access is denied.

Example 3.1: Verification of access right
Suppose user U2 wants to write in file F3. That means, a23 = 2.
The system fetches time stamps TU2 and TF3 from the user and
file key tables. Since TU2 = 3 < TF3 = 5, so we use

23
3

2
2z

z

i
r

Q
=

mod for z = 1,2, 3.(since c = 3).

Hence,

23
1

2

12
2

2
r =

mod = 1; 23
2

2

4
2

2
r =

mod = 1;

23
3 0r = ;

()23 23
3

23
2

23
1 011 3r r r r= = =() is greater than the requested

access right 2 (write), the access is allowed. However, if U2 wants
to delete file F3, the access will be denied. Because in that case a23
= 4 and we found r23 = 3 < 4.

Suppose user U3 wishes to delete file F2. That means, a32 = 4.
The system fetches time stamps TU3 and TF2 from user and file
key tables. Since TU3 = 4 > TF2 = 2, we use

23
3

2
2z

z

j
r

K=

mod for z = 1,2, 3.(since c = 3). Hence,

23
1 0r = ; 23

2 0r = ; 23
3

2

4
2

2
r =

mod = 1;

()32 32
3

32
2

32
1 100 4r r r r= = =() is equal to the requested access

right 4 (delete), the access is allowed.

3.4 Changing Access Right

Let us consider access right rij is changed to

()ij ij
c

ij
c

ijp p p p= −1 1. . . . To update the key we first compare

the time stamps TUi and TFj of the user and the file. If TUi > TFj,
we recompute the user key Ki. Otherwise we recompute the file
key Qj. By executing algorithm 3.2, we can update the key.

Algorithm 3.2: Changing access right
Steps:

1. Input rij and pij;
2. If TUi > TFj then

 Begin
 For 1 ≤ z ≤ c do
 Begin
 set 1t p ij

z= and 2t r ij
z= ;

 compute t = t1 - t2;
 If (t ≠ 0) then
 i

r
i
r jK K t' . ;= + 2

 Else
 i

r
i
rK K' ;=

 End_for;
 Else
 Begin
 For 1 ≤ z ≤ c do
 Begin

 set 1t pij
z= and 2t r ij

z= ;

 compute t = t1 - t2;
 If (t ≠ 0) then
 j

z
j
z iQ Q t' . ;= + 2

 Else
 j

z
j
zQ K' ;=

 End_for;
 End;

 Step 4: Output K′i or Q′i.

Example 3.2: Changing access right
Suppose the access right r21 = 010 (see binary access control
matrix in Fig. 3.2) is changed to p21 = 011. Since TU2 =3 > TF1 =
2, so we update K2. Here K2 = (0, 6, 4). By executing algorithm

3.2, we get K′12 = K
1
2 + 2 = 4 + 2= 6, K′

2
2 = K

2
1 = 6, K′

3
2 = K

3
2

= 0, K′
2 = (0, 6, 6). Let r34 = 011 will be changed to p34 = 100.

Since TU3 = 4 < TF4 = 6, we update Q4. Here Q4 = (2, 8, 12). So,

A Two-Key Access Control Scheme Based on Binary Access Mode

37

by executing algorithm 3.2, we get Q′
1
4 = Q

1
4 - 2

3
 = 12 - 2

3
 = 4

(since t = -1), Q′
2
4 = Q

2
4 - 2

3 = 8 - 8 = 0, Q′
3
4 = Q

3
3 + 2

3
 = 2 + 8

= 10. So, Q′4 = (10, 0, 4).

If we wish to verify any access right with changing values of the
keys, the result will be correct.

3.5 Adding a User or File

When a user is added to the system, we assign the value of the
current time stamp as the time stamp of the user. Then we
compute the key value of the user by equation (3.2). To add a
new file to the system we assign the current time stamp of the file
and compute the key value of the file by equation (3.3).

3.6 Deleting a User or File

The deleting process is very simple. When a user (file) is being
deleted from the system, we delete the key value and the time
stamp for the user (file) from the user (file) key table.

4.0 DISCUSSIONS

The key construction process of the proposed scheme is simple,
since the key is a sum of some terms that are in the form of power
of 2. Here we need to consider only the non-zero bits of access
right (i.e., for ij

rr =1). As we know the access matrix is usually a

sparse [3, 7, 11] and we do not need to consider the zero access
rights as well as zero bits of non-zero access rights, the key
construction process is obviously simple. The user (file) key table
contains only key value and time stamp value. That means we use
simple user (file) key table. To find out each bit of an access right
the system requires 2 divisions. So, to find c bits of the access
rights it requires 2c divisions and c is usually a very small number,
such as c = 3 or c = 4. Changing of access right is also easy. New
user (file) can be easily added to the system by constructing the
corresponding key value. Deletion of a user (file) is very simple.
The storage required to implement the proposed scheme is O(c(m
+ n)) = O(m + n), that is one key for one user and one key for one
file. If we consider c = 4, we can accommodate 2

4
- 1 = 15 access

modes (execute, read and so on) and that will be enough for
practical use.

As we know each key of a user consists of c elements. If we take
one integer for one element, the key can be defined as a structured
(record) of c integers. However, one integer may not be enough for
storing one element of the key. For instance, if we consider a 32-
bit computer, the largest integer allowed by such a computer is 2

32
.

Since each element is a sum of several terms that are in the form of
power of 2, there may be an overflow to hold one element using
one integer. In such a case we must take several integers for each
element. So, we require an array of integers for holding one
element. Thus each element of a key is an array of several integers
and each key is a struct ure of such c arrays.

5.0 CONCLUSION

In this paper we proposed a very simple and efficient two-key
access control scheme based on binary access modes and time
stamp concept. For the proposed method we devised algorithms
for verifying and changing access rights. The scheme achieves full
dynamism. That is, changing the access right, insertion as well as
deletion of any user (file) can be successfully implemented by
performing operations on one key. The required storage for
implementation of the scheme is not very large. The proposed
method gives the flexibility of using access modes and the
overflow problem can be easily handled. Furthermore, the
proposed method is very suitable for implementing sparse access
control matrix.

REFERENCES

[1] D. E. R. Denning, Cryptography and Data Security;

Addison-Wesley, Reading, MA, 1983.

[2] D. E. Knuth, The Art of Computer Programming, Vol. 2:

Seminumerical Algorithms, 2nd edition, Readind MA:
Addison-Wesley, 1981.

[3] G. S. Graham and P. J. Denning, Protection- Principle and

Practice; Proc. Spring Joint Computer Conf., Vol. 40,
AFIPS Press, Montvale, NJ, 1972, pp. 417-429.

[4] J. K. Jan, A Single Key Access Control Scheme in

Information Protection System, Proceedings of National
Computer Symposium, Taiwan, 1987, pp. 299-303.

[5] J. C. R. Tseng and W. P. Yang, A New Access Control

Scheme with High Data Security, Ninth Annual
International Phoenix Conference on Computer and
Communications, IEEE Comp. Soc. Press, 1990, pp. 683-
688.

[6] J. K. Jan, C. C. Chang and S. J. Wang, A Dynamic Key-

Lock-Pair Access Control Scheme, Computers and
Security, Vol. 10, 1991, pp. 129-139.

Islam, Selamat and Md. Sap

38

[7] R. S. Sandhu and P. Samarati, Access Control: Principle
and Practice, IEEE Communication Magazine, 1994, pp.
40-48.

[8] C. C. Chang, J. J. Shen and T. C. Wu, Access Control with

Binary Keys, Computers and Security, Vol. 13, 1994, pp.
681-686.

[9] M. S. Hwang, W. G. Tzeng and W. P. Yang, An Access

Control Scheme Based on Chinese Remainder Theorem
and Time Stamp Concept, Computers and Security, Vol.
15, No. 1, pp. 73-81, 1996.

[10] C. C. Chang, D. C. Lou and T. C. Wu, A Binary Access

Control Method Using Prime Factorization, Information
Sciences, 1997, pp. 15-26.

[11] M. R. Islam, H. Selamat and M. N. M. Sap, A Binary

Access Control Scheme with Single Key, Journal of
Information Technology, UTM, Vol. 9, No. 2, 1997, pp.
1-10.

[12] M. R. Islam, H. Selamat. and M. N. M. Sap, A Technique

to Ease a Common and Major Computational Complexity
of the Security Schemes Based on Chinese Remainder
Theorem, Journal of Information Technology, UTM, Vol.
10, No. 1 (To appear).

BIOGRAPHY

Md. Rafiqul Islam obtained his Master of Science in Engineering
(Computers) from Azerbaijan Polytechnic Institute in 1987. He is
an Assistant Professor of Computer Science and Engineering
Discipline of Khulna University, Bangladesh. Currently, he is on
study leave and doing Ph.D at Faculty of Computer Science and
Information Systems, in Universiti Teknologi Malaysia. His
research areas include design and analysis of algorithms, Database
security and Cryptography. He has published a number of papers
related to these areas. He is an associate member of Bangladesh
Computer Society.

Harihodin Selamat holds an MSc from Cranfield University,
UK and a Ph.D from the University of Bradford, UK both in
computer science. Currently he is an Associate Professor at the
Faculty of Computer Science and Information Systems in
Universiti Teknologi Malaysia. His research areas include
Database security, Database design and Software engineering.

Mohd Noor Md. Sap is an Associate Professor at the Faculty of
Computer Science and Information Systems in Universiti
Teknologi Malaysia. a B.Sc. (Hons) from the National University
of Malaysia, an MSc from Cranfield University, UK, and a Ph.D
from the University of Strathclyde, UK. He is currently carrying
out research in Database security, Case-based reasoning and
Information retrieval.

