
Malaysian Journal of Computer Science, Vol. 9 No. 1, June 1996, pp. 12-17

12

REAL-TIME MULTITASKING KERNEL FOR IBM-BASED MICROCOMPUTERS

Mohammed Samaka
School of Computer Science

Universiti Sains Malaysia
11800 Penang, Malaysia

Tel.: 604-6577888
Fax: 604-6575113

email: samaka@cs.usm.my

ABSTRACT

Presents a real-time multitasking kernel (RTMK) for the
IBM-based computers. It is developed using the Modula-2
Top Speed version. RTMK offers an expanded set of
synchronisation and communication primitives that are
dynamically created, and included with a time-out control
mechanism. The kernel provides a base around which real-
time application systems can be built. Its flexible and
modular design simplifies the expansion of the kernel.

1.0 INTRODUCTION

In a microcomputer control system, the microprocessor
must perform many functions concurrently. These include,
for instance, measuring process variables, filtering signals,
updating control settings, checking alarm conditions, etc.
These functions require the use of computer resources such
as processor, memory, and input/output devices. To
perform resource sharing economically and efficiently, a
number of real-time operating systems have been developed
in process control applications [1, 2, 3, 4, 5]. Such
operating systems can be used for building real-time,
multitasking applications requiring co-ordination and
resource allocation.

The aim of this study is to present a real-time multitasking
kernel (RTMK) that is powerful and flexible, and allows a
wide variety of application systems to be developed without
much programming effort.

The RTMK provides the following features:

• Dispatching of concurrent processes competing for
microprocessor use;

• Interprocess communication and synchronisation;

• A system initialisation capability;

• Handling hardware interrupts;

• Diagnostic feedback during error conditions.
2.0 IMPLEMENTATION TOOLS

The RTMK is developed on an IBM-based PC and written
in a language called Modula-2, Top-Speed version. This
language is largely machine independent and supports many
current software engineering concepts. The Top-Speed
version is facilitated with special modules that support the
development of any system of congruency control [6, 7].
These modules include:-

(i) System Module.
It performs process creation and switching. It
incorporates the following modules:

• New Process. This procedure transfers execution
from one process to another. The type of transfer
is synchronous.

• Iotransfer. Is an interrupt driven. When the
processor receives an interrupt it checks whether
the interrupt is associated with a process, in which
case the current process is suspended, and a
process that was previously suspended is resumed.

The System module also provides procedures to
disable and enable hardware interrupts.

(ii) Storage Module.
This module allows the designer to allocate, and de-
allocate blocks of memory dynamically.

3.0 PROCESS MANAGEMENT

Process is the basic active entity of an application in the
RTMK. Because of the limited memory space, processes
have to be dynamically created and deleted. The number of
processes in the system is not fixed; it depends on the
activities of the system. The principal data structure used
by the RTMK to maintain a process is the process
descriptor. The process descriptor contains all the
information about a process such as its attributes and status.
Information, such as process-name, process-state, process-
priority, memory-usage, process delay/awaken time,
message-address, and process-error.

It also includes the following indicators:

Real-Time Multitasking Kernel For IBM-Based Microcomputers

13

• Alarm, a Boolean flat to indicate whether a process is
using the semaphore time-out.

• Region, to indicate that the process is inside the
critical region.

• Process-wait, to indicate the queue where the process
is currently waiting.

4.0 RTMK QUEUES

The RTMK maintains a list of processes. The list usually
takes the form of a queue. Processes can be added to or
removed from the queue. The queue is an important data
structure for process management. Within the RTMK, a
number of global system queues exist. They include:

• Delay queue. It holds the processes with delayed
state. The queue is headed by a process with the
shortest delay time.

• Suspend queue. It contains the suspended process.
They are ordered using the LIFO discipline.

• Ready queue. It contains processes that are ready to
run. Processes are ordered according to their priorities.

• Alarm queue. It maintains information about time and
date that a process can wait in a semaphore waiting
queue.

5.0 PROCESS STATES

Each process can be in one of the four states: active
(currently executed by the processor); ready (can be active
if the processor is released. The other resources necessary
for its continuation are available); waiting (expecting the
occurrence of a certain event to continue its execution); and
blocked (its existence is known to the RTMK, but is
ignored by the dispatcher and may be activated by another
process).

Processes that have not been created or that have been
terminated are considered to be non-existent. Fig. 1
illustrates the various process states and transitions from
one state to another.

����������

�	

��	

��
	��	�

�	�	��	��	

��	

�����	

�	���

�	����	

��	

�	
��	

���������� �
	��
���	

��	

�	�	��	
�	

��	

��
	��

�	����	

��	

��
����
����	

�	����	

��	

����

���������� ��	
�

��	��	�	�����
���������� ��

	�����	

�	�	��	��	

��	

�����������

	�	�������

�	���	�

����	��
�	��

���������	�	�������

�	
��	����
�	�����	�����	����

�	���

 ���!	�

���

�����

"�	��	������	

�	������	

Si
gn

al

Se
t e

ve
nt

 f
la

g

Fig. 1: RTMK process state diagram

Samaka

14

A waiting process can expect one of the four possible
conditions. When a process is waiting for a requested
amount of time of elapse, it is in the delayed state. A
process in the suspended state is waiting to be “resumed” by
other processes.

6.0 PROCESS INTERCOMMUNICATION

In a multitasking system, processes interact for two
reasons:- to share resources and to communicate with one
another by exchanging information (data and messages).
This leads to a number of potential problems. The most
important of which are deadlocks, mutual exclusion and
race condition. There must be some exchange mechanisms
to cope with those problems. The mechanisms adopted in
this study are: semaphores, region and mailboxes [8, 10].

6.1 Semaphores

For process synchronisation, the RTMK offers counting
semaphore variables with the usual operations wait and
send [8]. Semaphores are implemented using time-out
mechanism. This helps to avoid the problem of deadlock.
A process can wait until the resource is available or for a
specified time. In this case, a process waiting time and date
will be kept in a record called alarm. This record exists in
the alarm queue. If a process waits longer than the expected
time, the exception handling module will handle the
problem.

Each semaphore has an integer count that indicates the
number of available instances for each resource type and a
queue in which it can wait. A process can wait in a
semaphore waiting queue according to the specified time set
by the user or it can wait until the required resource
becomes available.

This implementation avoids busy-waiting, i.e. it denies CPU
services to the waiting processes. When a process needs to
wait on a semaphore, the system places it in a queue of
processes associated with that semaphore.

6.2 Mailboxes

Co-operating processes must be able to share information.
Communication between processes within the RTMK is
based on message passing mechanism. It is implemented by
using mailboxes, as mailboxes provide many-to-many
communication. A mailbox allows multiple outstanding
messages. Any process can receive a message from a
mailbox. Processes are usually blocked until the request
can be satisfied. The developed mailboxes are very flexible
and allow another kind of communication mechanism,
which is called rendezvous, a synchronous bi-directional
communication. A process attempting to send a message is,
therefore, made to wait until a receiver is available. The

receiver also awaits for a sender, so that two processes can
be synchronised for a message exchange to occur [8].

Each mailbox is equipped with two semaphores and a buffer
to hold messages’ addresses. One semaphore controls
producer, blocking any process that attempts to add
messages to a full buffer. The other semaphore controls
consumers, blocking any process that attempts to remove a
message from an empty mailbox buffer.

The mailbox’s technique provides:

• Protection against allocating large amount of memory;

• Address of messages are passed through a mailbox, not
the messages themselves. Mailboxes can be used for
passing any object as each object has an address.
Messages can be of any data type.

6.3 Region

To ensure that only one process will be in a critical section
at any one time, the RTMK provides region method, which
has the same type as semaphores, but the operations are
slightly different. Any process that gains access to a region
cannot attempt to suspend or delete itself. Any attempt to
do so will lock up the region, preventing other processes
from accessing the data guarded by the region. There are
two fields in a process descriptor. One is used to dedicate
the nesting level of a critical section, and the other to
indicate whether a process is inside the critical section.

7.0 PROCESS DELAYING/ACTIVATION

Operating systems usually use real-time clock internally to
limit the amount of time a process can execute, as well as
externally, to provide user programs with services like time
delays. The RTMK maintains a queue of delayed processes
ordered by their time. Whenever the real-time clock
interrupt occurs, the delay queue will be examined and
initiate the processes for which the delay time has expired.
Processes in delay queue are ordered by the time at which
they will be awaken. Within each process descriptor, there
is a field that keeps number of ticks that the process must
delay. On each clock tick, the scheduler examines
processes in the delay queue and moves the process whose
time delay has expired from the delayed queue to the ready
queue.

8.0 INTERRUPT MANAGEMENT

A real-time system is event driven. External events occur in
an unpredictable manner. Other events are caused by
running processes. In many cases, these events require
extremely fast response. A process may signal an event by
an interrupt or system call to another process. External

Real-Time Multitasking Kernel For IBM-Based Microcomputers

15

events are always exsignalled by interrupts. There are two
types of interrupt processing. They are:-

(i) Interrupt Process

In this type of processing, a process will be active as
a result of an interrupt. Before an interrupt occurs,
the process stays in a waiting state. Immediately after
the interrupt occurrence, the process becomes ready,
but not necessarily running because other ready
processes may have greater priority in the ready
queue. Interrupt process is under control of the
scheduler; it has its own stack and it is used for long
activities.

(ii) Interrupt Handler

For handling this type, there are two possibilities for
managing events:- with or without context switching.
The first uses conventional interrupt service routines,
which are started when the interrupts occur. Here,
the activities initiated by the interrupt are executed
with a disabled interrupt and on the stack of the
interrupted process. Therefore, this method is
appropriate for short activities and high priority
interruption. It is not under the control of the
scheduler. The second is suitable for events that are
signalled by interrupts. In this respect, when an
interrupt occurs, immediately transfers to a
procedure within a real-time system. Such
procedure can establish the appropriate response and
resume the interrupted process without formal
rescheduling. This method is used for long
activities, under the control of the scheduler.

9.0 THE SCHEDULER

Real-time processes are normally active and subject to
short-term scheduling. This type of scheduling follows a
strict priority algorithm with immediate pre-emption.
Processes are entered into the ready queue according to
their priorities. When the CPU is available, the process at
the head of the ready queue is always selected. As long as
there is no higher priority process in the queue, the running
process continues until it requests service or voluntarily
suspends itself. Because a real-time process knows best
when its activities are critical, a running process may be
permitted to lock out pre-emption by an appropriate system
call. While this locking is active, the process will continue
running even if a higher priority process becomes ready. Of
course, a process is expected to use this mechanism for a
short period only, and it must cancel the lock as soon as it is
no longer needed.

In the RTMK, the scheduling algorithm that determines the
running process is based on the process priority and state in
the system. As a rule, the process selected to run is one that
has the highest priority. This kind of scheduling is called

pre-emptive priority based scheduling, where a higher
priority process will pre-empt a lower priority running
process.

Scheduling of processes with the same priority is known as
round-robin scheduling. In this method, each process in
the ready queue is assigned a fixed CPU time. When the
CPU is available, the process at the head of the queue is
selected to run. If that process uses up its allocated time, it
is interrupted and placed at the end of the queue. The ready
processes continue to be serviced in a circular order.

When there is more than one process in the ready queue
with the greatest priority, two modes are possible:- with
time slicing, and without time slicing.

• With time slicing mode, each process is assigned a
limited time (1/18.2 sec). If the process exceeds this
time quantum, a hardware interrupt triggered by the
system’s real-time clock will cause control to pass to a
routine associated with the timer interrupt. The system
state of the currently executing process is saved, and
the CPU is allocated to another process in the ready
queue. When a process is selected to run, the system
is restored to the state before it was interrupted.

• Without time slicing, the first process in the ready
queue with the higher priority is executed.

10.0 EXCEPTIONAL CONDITION MANAGE-
MENT

It is the nature of the most real-time applications that they
are left to run for many days once they are started.
Therefore, RTMK must keep running despite the
occurrence of software errors and hardware faults. To
achieve this requirement, the exception handling mechanism
is implemented. If an error occurs, the system is notified
about it and an exception is generated. After an exception
occurs, it is serviced by a standard supplied procedure. For
this study, the exception handling mechanism is developed
using assembly language 80386. Whenever a process
invokes a system call, the means of communicating the
success or failure of the call is the condition code. The
condition codes that the RTMK return are numeric values.
Conditions that represent failure are called exceptional
conditions. There are two classes of exceptional
conditions:- programmer errors and environmental errors.
A programmer error is a condition that may be generated
when calling a process. In contrast, an environmental
condition is an exceptional condition that arises due to
circumstances beyond the control of calling a process.

When an error occurs, the RTMK informs the user about
the error by displaying a message that declares error type
and the name of the process in which the error occurred,
and performing a group of actions to deal with the error.

Samaka

16

11.0 RESULTS

The most important measures used to evaluate the
performance of a RTMK is the response time [9]. Response
time is the time between an event (caused by an interrupt)
and the reaction of the system to that event. This time
depends on:-

1. How long interrupts are disabled in system operations.

2. Time of context switching.

In the present work, interrupts are disabled in operations
such as send and wait, to protect shared data structures
(queues) against corruption. To improve the system
efficiency, the time when an interrupt is disabled must be as
short as possible. In general, it is not possible to measure
this time without special equipment, which is not available
during the period of this study.

The context switching time is the time that CPU spends in
saving information about the suspended process, and
restoring information about the resumed process [8]. In the
present study, this time has been computed approximately
for different computers, by writing a software programme.
Modula-2 supplied SYSTEM module from which
TRANSFER procedure can be imported. This procedure
causes a direct switching from the current process to a
destination process, and through this switching, information
will be saved and restored about the processes. So the
purpose of the programme is calculated on how many times
TRANSFERs are executed during one time slice (1/18.2)
Then time consumed by one TRANSFER is easily
computed by the expression (1/18.2) *1000/number of
TRANSFERS, which means approximately the context
switching time. The experiment has been applied using
different computers, depending on processor type and
speed, as shown in Table 1.

Table 1: RTMK performance results

COMPUTER TYPE CLOCK

FREQUENCY

CONTEXT
SWITCH

TIME

QUADRANT AT 80286

QUADRANT AT 80286

PCI NEC V 40

PS2 80386

8 MHz

16 MHz

8 MHz

20 MHz

0.3969553 ms

0.1755433 ms

1.123276 ms

0.1050574 ms

The context switch time plays as an important criterion in
the evaluation of RTMK performance. Therefore, increase
in the processes executed in the system would increase the
time spent by the CPU to perform context switching. As a
result, the utilisation of the system would decrease.

12.0 CONCLUSION

This research project is concerned with the design and
implementation of a real-time multitasking kernel for the
IBM-based computers. The kernel is written using Modula-
2, Top Speed version, which implements special modules to
support the development of any system of congruency
control. The original goal of the RTMK formulated in the
introduction has been achieved and implemented. The
result of our approach is the fact that RTMK is useful for
designing real-time applications for microprocessor
systems.

Some essential areas of development being planned for any
further future enhancements are:-

• Implementing the RTMK as an embedded controller in
which the code is held in a ROM.

• The RTMK can be written as a completely
independent portable product. The portability can be
achieved by using an intermediate language and a
virtual processor. The user object programme can be
independent from the host microprocessor. That
would allow the RTMK to be included in any existing
microcomputer configuration due to its portability and
independence.

• Another future area to look into, is the usage of object
oriented paradigm in developing the RTMK.

REFERENCES

[1] K. Schevan, “Developing High-Performance Parallel
Software for Real-Time Applications”, Information
and Software Technology, Vol. 30, No. 4, May
1988.

[2] L. Nikolov and I. Kovaskki, “Design and
Implementation of a Portable Kernel for Real-Time
Applications”, Microprocessing and Micro-
programming, Vol. 21, 1987, pp. 198-196.

[3] P. Gratti, “MODOSK: A Modular Distributed O.S.
Kernel for Real-Time Process Control”, Micro-
processing and Microprogramming, Vol. 9, 1982,
pp. 201-214.

[4] P. Pulli, “Embedded Microcontroller Operating
System with State-Machine Support”,
Microprocessing and Microprogramming, Vol. 18,
1986, pp. 54-62.

[5] T. Bemmerl and G. Scodar, “A Portable RTMK for
Embedded Microprocessor Systems”, Micro-
processing and Microprogramming, Vol. 21, 1987,
pp. 181-188.

Real-Time Multitasking Kernel For IBM-Based Microcomputers

17

[6] K. King, Top Speed Modula-2 for IBM Computer,
Jenson and Partners International, 1986.

[7] B. Cornelius, Programming with Top Speed
Modula-2, Addison Wesley, 1991.

[8] A. Tanenbaum, Modern Operating Systems,
Prentice-Hall, 1992.

[9] T. Temelmeier, “Performance Analysis of a Micro-
programmed Real-Time Operating System with an
Interrupt-and-Abort Discipline”, Microprocessing
and Microprogramming, Vol. 19, 1987, pp. 233-
251.

[10] W. Stalling, O. S., Prentice-Hall, 1995.

BIOGRAPHY

Mohammed Samaka obtained his M.Sc. and Ph.D of
Computer Science from Loughborough University of
Technology. Currently, he is a Senior Lecturer at the
School of Computer Science, University Science of
Malaysia. His research areas include Operating Systems,
Robotics Softwares and Computer Architectures. He has
published a number of papers related to these areas.

	COMPUTER TYPE

